Sustainment Capability and Capacity

Sarah A. Sheard, Ph.D.
Robert Ferguson
Andrew P. Moore, Ph.D.
D. Michael Phillips
David Zubrow, Ph.D.
SEI Objectives

The SEI works to:

• Identify, research, evaluate, and advise on software engineering technologies, trends, and practices
• Collaborate with and leverage work found in industrial research, academia, and government laboratories
• Mature promising software engineering technologies to enable standards, transition, and adoption
• Enable government & industry organizations to make measured improvements in their software engineering practices
<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two SEI sustainment presentations</td>
<td>This presentation</td>
</tr>
<tr>
<td>Sustainment Capability and Capacity</td>
<td>System Dynamics of Sustainment</td>
</tr>
<tr>
<td>Value of Sustainment</td>
<td>Research Questions</td>
</tr>
<tr>
<td>Sustainment Cycles</td>
<td>Need for Sustainment Work</td>
</tr>
<tr>
<td>Why Invest?</td>
<td>Gaps as Sustainment Forces</td>
</tr>
<tr>
<td>Sustainment Capability</td>
<td>System Dynamics Model</td>
</tr>
<tr>
<td>Sustainment Capacity</td>
<td>Scenarios</td>
</tr>
<tr>
<td>Sustainment Processes</td>
<td>Outcomes</td>
</tr>
<tr>
<td>System Dynamics Model</td>
<td>Plans</td>
</tr>
<tr>
<td>Future Work</td>
<td></td>
</tr>
</tbody>
</table>
Value of Sustainment

Make equipment ready for operational theater
Prevent obsolescence in older equipment (technology refresh)
Reduce need for costly new-start programs
Fill gaps before new-start programs are ready
Sustainment Investment Needs

Understand new hardware (staff must learn how new hardware works)

Upgrade software of existing equipment to correctly command, and manage data, from new equipment

Purchase or develop tools; finance learning curve

Rewrite processes for new equipment, knowledge, and tools

Purchase or create training courses; send people to courses
Why Invest in Sustainment Infrastructure?

Capable, stable **workforce** (lower turnover, refreshed skills)
Reduced sustainment **time** (skilled employees ready now)
Reduced **cost** (skilled employees work faster)
Higher **quality** software (tools with error detection)
Reduced maintenance **errors**
Innovation easier (new tools and techniques)
Definition: Sustainment Capability, Capacity

Capability

- Capable
 - Unskilled
 - Somewhat Skilled
 - Fully Skilled
 - Not Capable

Hiring

Training, Tools

© 2013 Carnegie Mellon University
Increasing Sustainment Capacity

Hiring / Contracting (Count & Capability)

Fresh skills

- **Pros**
 - Hiring: Costs, delay, difficulty (government salaries, instability); two years to understand job
 - Contractors: Domain experience? Organic/Contractor law

- **Cons**
 - Long-term retention, long-term domain expertise, better performance
 - Takes time, takes people away from sustainment

Training (Capability)

- Faster development, possibly fewer defects
- Learning curve

Tooling (Capability)
Measuring Sustainment Processes

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Throughput</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missions measured by capabilities used and mission-capable availability</td>
<td>Action reports measured by %success and availability gap</td>
<td>Missions performed</td>
<td>Days to months</td>
</tr>
<tr>
<td>Operational Needs Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission performance measures</td>
<td>New capability definition</td>
<td>Prioritized operational needs</td>
<td>Weeks to months</td>
</tr>
<tr>
<td>New potential threats, technologies, uses, and mission capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering & Delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainment demand (accepted and not-accepted requests)</td>
<td>Delivered products by count of deployments and costs</td>
<td>Sustainment capacity</td>
<td>Hours to months</td>
</tr>
<tr>
<td>Sustainment capability required (skills, tools, facilities)</td>
<td>Sustainment gap (i.e., requests not accepted)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capability & Capacity Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes to training, tooling, facility, and processes</td>
<td>Capacity available (%request)</td>
<td>Capability changes, capacity improvement</td>
<td>Months to years</td>
</tr>
<tr>
<td>Hiring, furloughs, and attrition</td>
<td>Capability availability date or delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budgeting for Improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding requested for capability and capacity development</td>
<td>Time required to fund, amount funded</td>
<td>Funding requests satisfied</td>
<td>Multiple years</td>
</tr>
</tbody>
</table>
System Dynamics Model

Operational Performance

Engineering & Delivery

Operational Needs Analysis

Capacity & Capability Development

Budgeting
Future Work

Portfolios of projects
Colors of money
Capability: Specific skills

Organic vs. contractor considerations

Systems/Software sustainment integration issues

Early life-cycle sustainment considerations:
 • What sustainment costs depend on system design?
 • What design aspects will reduce sustainment costs?
 • How to estimate sustainment costs early
Distinctive Competencies

The SEI’s distinctive competencies include

• Software Engineering and Research
• Cybersecurity
• Emerging Software Technologies
• Acquisition Solutions
Contact Information

Sarah Sheard
Senior Engineer
Software Solutions Division
Telephone: +1 412-268-7612
Email: sheard@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257
BACKUP SLIDES
Sustainment vs. Maintenance

Sustainment
- A phase
- Software and hardware upgraded together
- Includes maintenance activities
- Includes infrastructure improvement and investment
- People, processes, tools, …

Maintenance
- Activities
- Some take place before sustainment phase
- Hardware maintenance “return to original function”
- Software maintenance “change to original function”
Kinds of Software Sustainment

Corrective: Correct discovered problems (bug fixes)

Perfective: Add features for performance and value (new algorithm for improved resolution)

Adaptive: Addressing external changes (other system, data standard)

Preventive: Correct latent flaws, system assurance (information, safety)

Sustainment cycles

- **Fastest (<3 months):** Immediate bug fixes
- **Fast (1–12 months):** Obtain tools and equipment, obtain supplies
- **Slower (12 – 24 months):** Preventive, Adaptive, and Perfective
- **Slowest (2 – 5 years):** POM cycle major upgrade, modernization
Motivation: Software Sustainment

How Is Software Sustainment Different?

Hardware Maintenance:
Updating and replacing parts
Modernization is separate

Software Sustainment:
Fixing problems, designing for new technology, adding features

Problems
Cost is huge, undefined (70% of life-cycle cost)
Software grows through >20 years of technology changes
Technology changes require updates to people, skills, tooling, processes

Working assumption
Failure to invest in infrastructure produces “tipping point” – fleet requires modernization or new program.

Project goal: Develop an *investment model* of software sustainment costs to improve decisions and prevent tipping points.
Customer and Sustainment Space
Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0000675