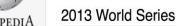
Engineering Your Software For Attack

Robert A. Martin

Senior Principal Engineer Cyber Security Center Center for National Security The MITRE Corporation


© 2013 The MITRE Corporation. All rights reserved.

Red Sox find safety in numbers, more memorable Game 6 scenes

The Free Encyclopedia

From Wikipedia, the free encyclopedia

The **2013 World Series** was the 109th edition of Major League Baseball's championship series. The best-of-seven playoff pitted the National League champion St. Louis Cardinals against the American League champion Boston Red Sox. The Red Sox had home field advantage for the series, based on the American League's win in the All-Star Game at Citi Field in Queens, New York, on July 16.^[1] The Series started on Wednesday, October 23, ending on Game 6 which occurred the following Wednesday, October 30, 2013.

This was the fourth meeting of the Cardinals and Red Sox in the World Series (previously meeting in 1946, 1967, and 2004). It is the first World Series since 1999 to pair the two teams with the best regularseason records in their respective leagues, and only the third in history (following the 1949 and 1958 Series) to feature two teams with identical regular-season records.^[2] Because both teams share the best overall regular-season records. It has baseball, this will be only the fourth time since the introduction of the Division Series (1995) in which the

2013 World Series

Search

View source View history

Team (Wins)	Manager	Season				
Boston Red Sox (4)	John Farrell	97–65, .599, 5.5 GA				
St. Louis Cardinals (2)	Mike Matheny	97–65, .599, 3 G				
Dates:	October 23-	30				

World Series Red Sox lead series 4-2

Game 6, Wednesday, October 30, 8:07 PM (ET) Fenway Park, Boston, Massachusetts

St. Louis Cardina	ls			1 - Fin	-	Red Sox						
	1	2	3	4	5	6	7	8	9	R	Н	Е
Cardinals	0	0	0	0	0	0	1	0	0	1	9	1
Red Sox	0	0	3	3	0	0	0	0	x	6	8	1
									4			

Game 7 - Thu, Oct 31

Cardinals @ Red Sox 🦺

8:07 PM (ET)

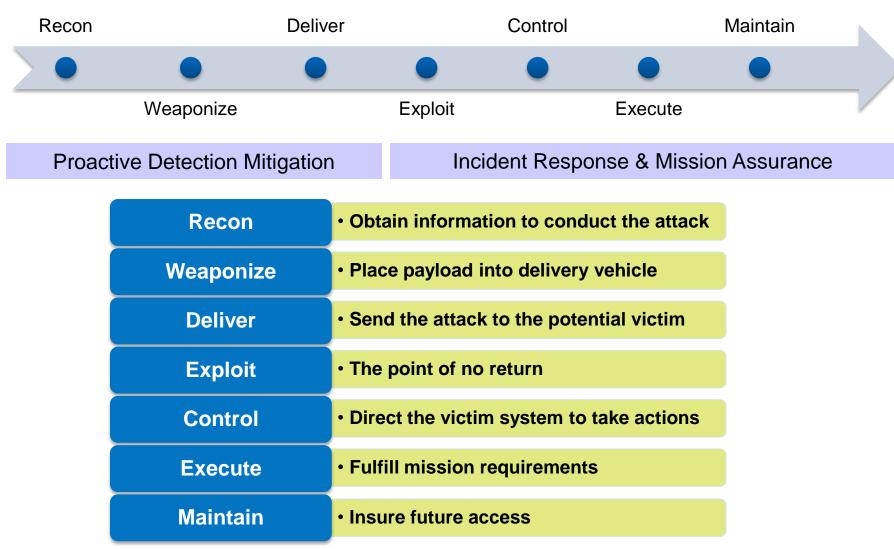
SOX ARE CHAMPS

In Series win, Sox go from worst to first

Making systems secure by just reducing attack surface really hard – maybe impossible

- Software Systems & Networks too large and complex
- Zero vulnerabilities for all assets on network?
 - Assumes you know all assets
 - Assumes you can know all vulnerabilities

Cyber Attack Lifecycle



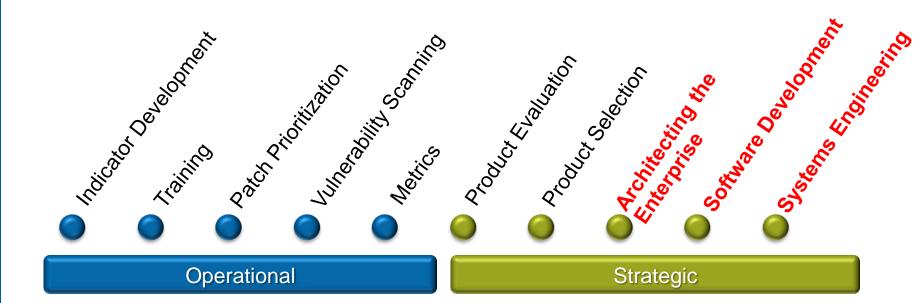
Characteristics of the Advanced Persistent Threat

- **1.** We won't always see the initial attack
- **2.** We can't keep the adversary out
- **3.** Advanced Persistent Threat is not a "hacker"

Cyber Threat Intelligence Sharing Building Blocks – Phases of a Cyber Attack Lifecycle

© 2013 The MITRE Corporation. All rights reserved.

```
MITRE
```



Elements of an Attacker Aware Cyber Threat Intelligence Sharing-Based Approach

- **1.** Understanding of the Attackers Building Blocks
- **2.** Effective Cyber Threat Intelligence Sharing Model
- **3.** Agile defensive posture aligned with threat from the attackers and attack techniques
- 4. Development team working side-by-side with operators (DevOps)

Extending the Threat-Driven Perspective Beyond Operational Defense

9

From Just a Mitigation Approach

A traditional information assurance approach based solely on regulation, which resulted in an approach based on **mitigation** and **compliance** around **static** defenses

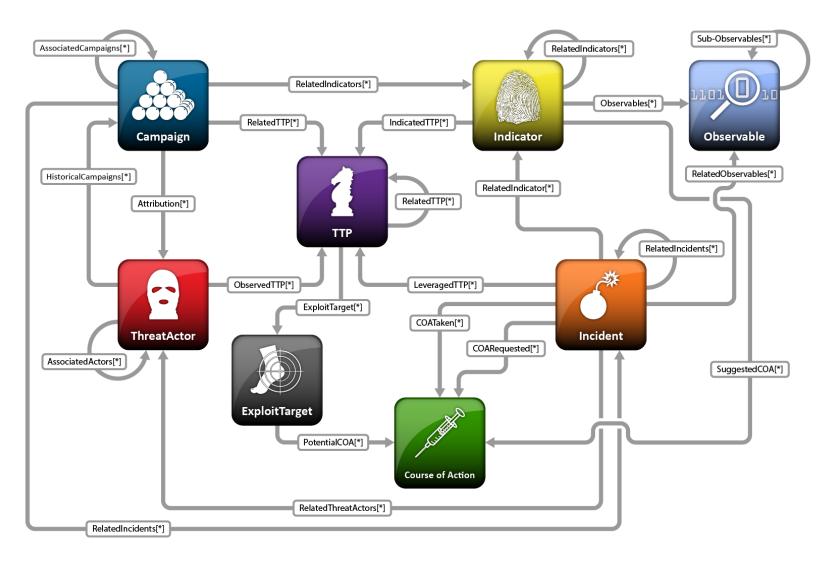
To a threat/attacker based cyber defense that understands attacks and balances Mitigation with Detection and Response

- Defenders become demanding consumers of intelligence, informed by understanding of the attacks their software systems face
- Producers of intelligence

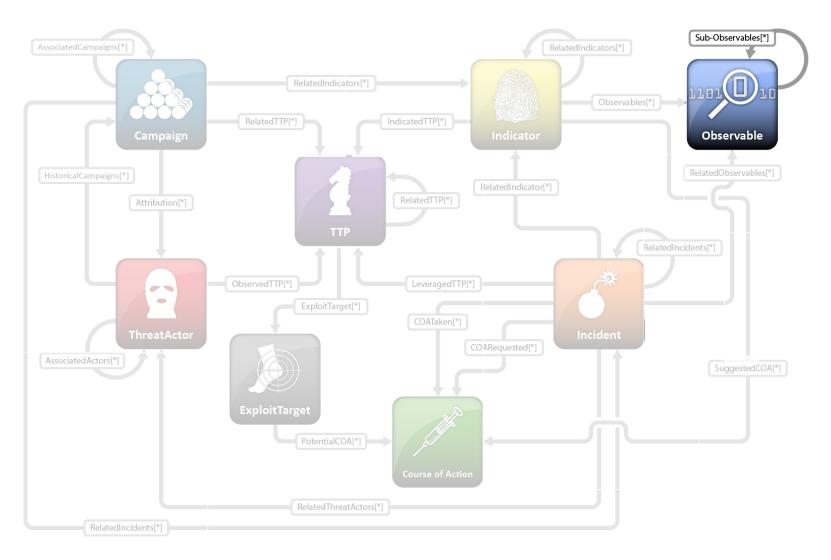
What is "Cyber Threat Intelligence?"

Consider these questions:

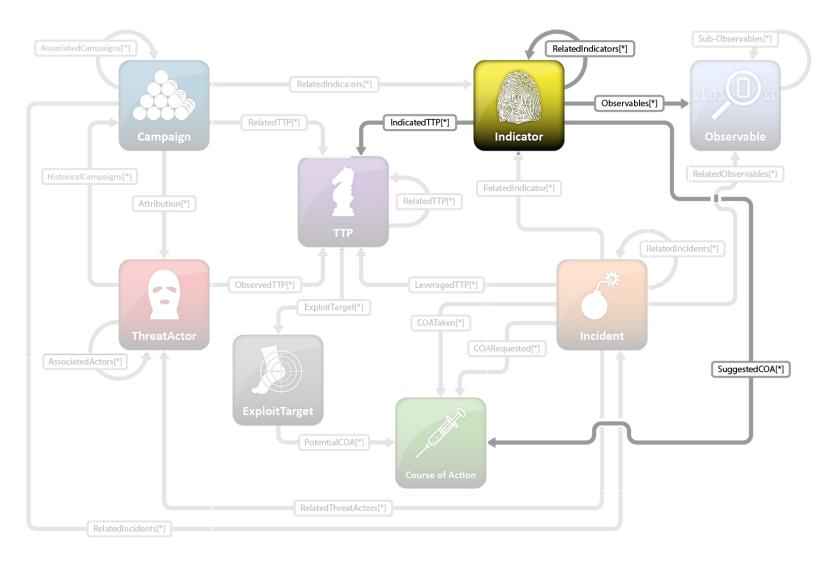
- What activity/attacks are we seeing? —
- What attacks should I look for on my networks and systems and why? ——
- Where has this attack been seen? -
- What does it do? _____
- What weaknesses does this attack exploit?
- Why does attacker do this? –
- Who is responsible for this attack?
- What can I do about it? _____

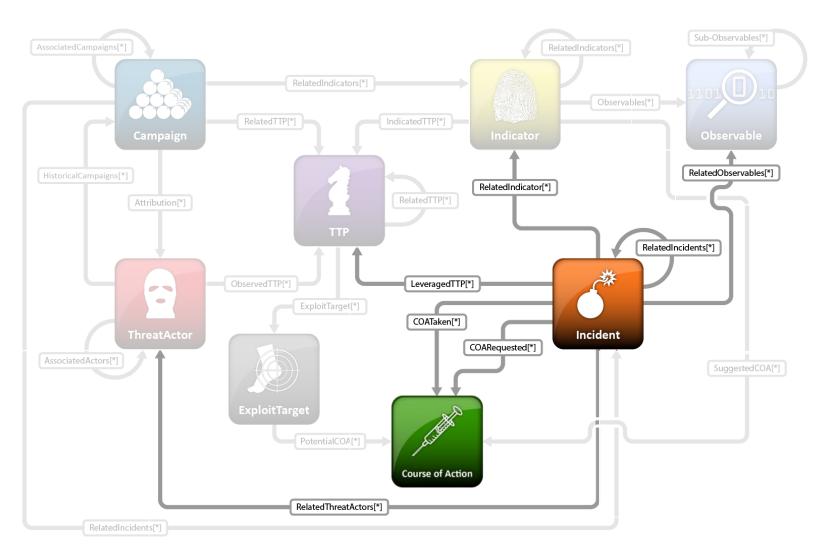

bservab

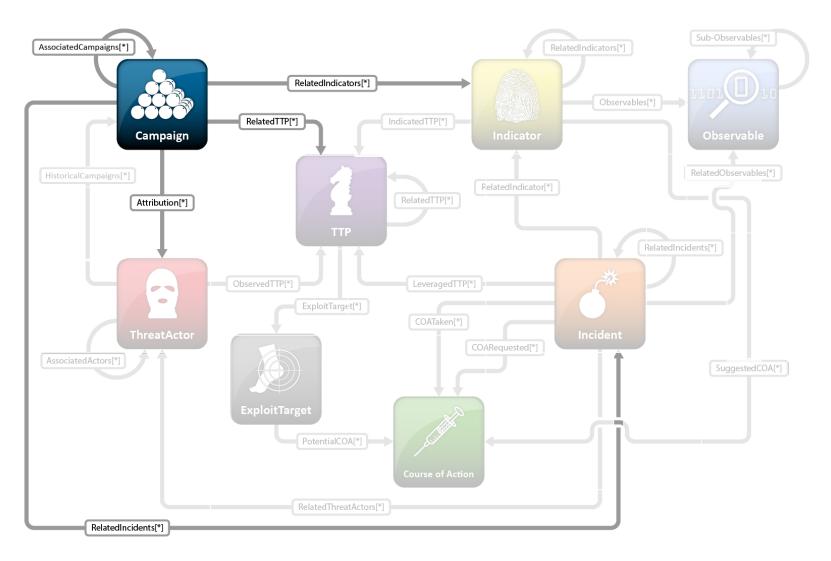
Incident

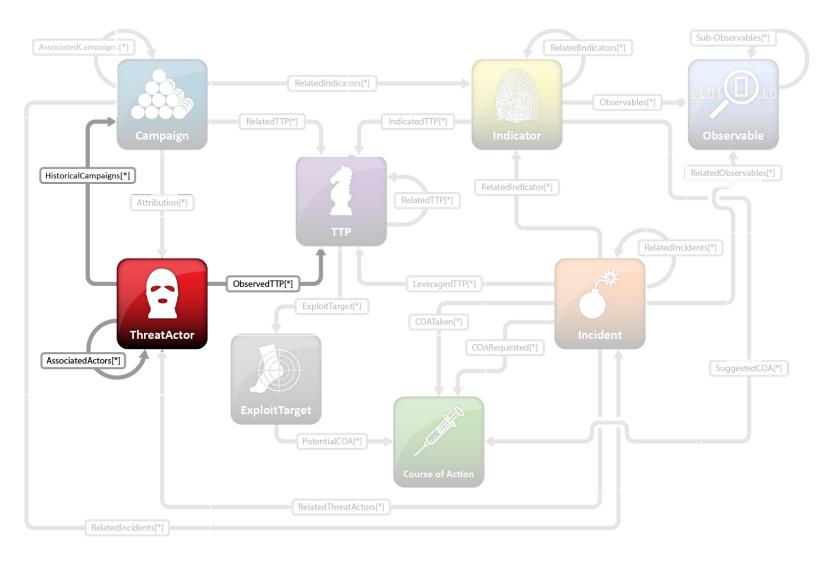

ExploitTarge

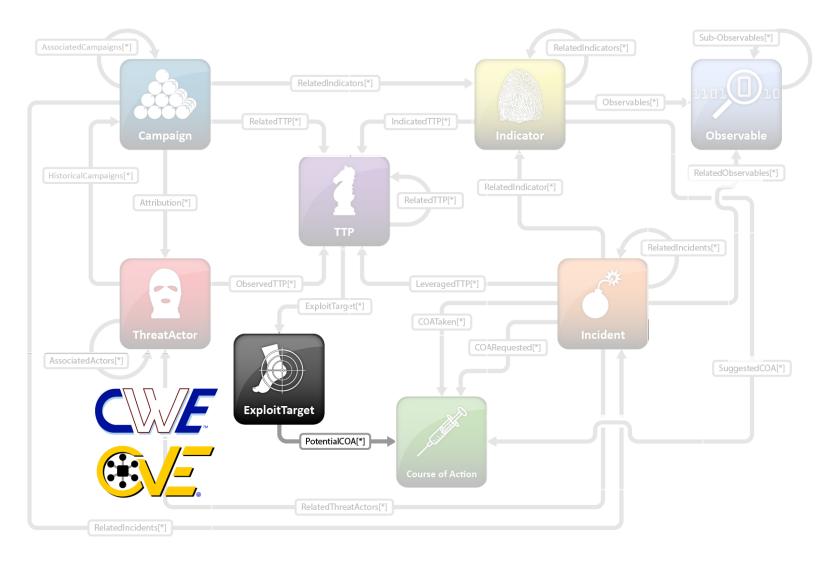
ThreatActor

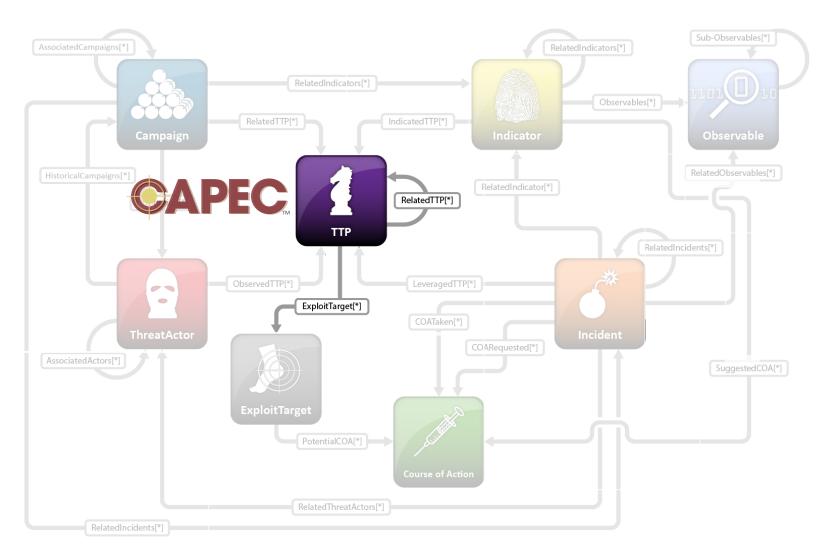

Indicator

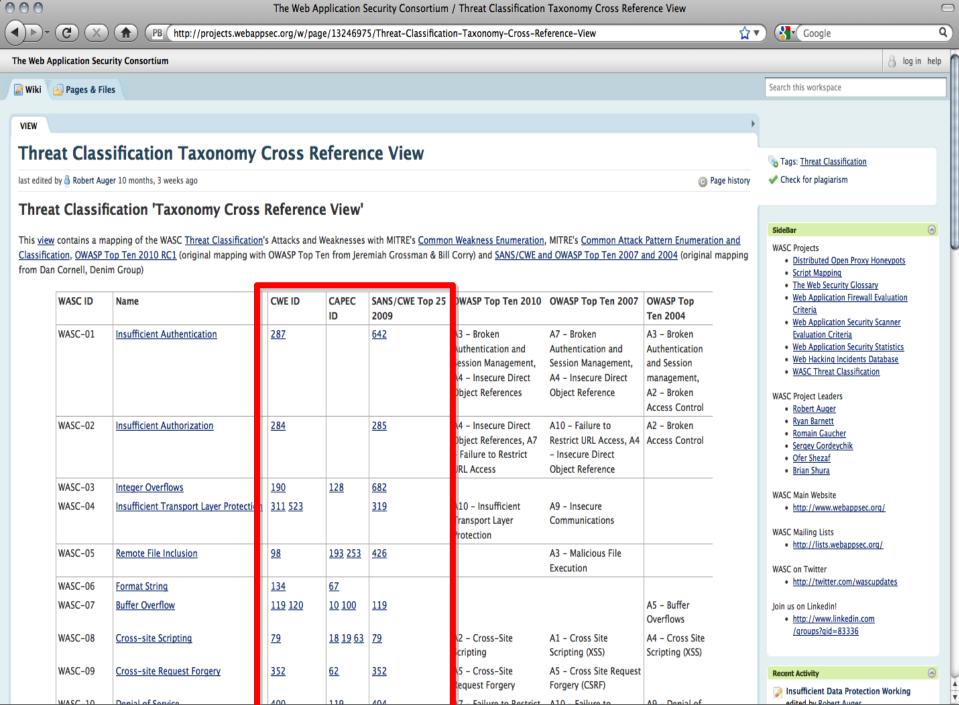









MITRE



Software Assurance.—The term "software assurance" means the level of confidence that software functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software, throughout the life cycle. Sect933

confidence

functions as intended

free of vulnerabilities

Input checking/validation SW load key

System Element Isolation

Failover Multiple Supplier

Development Environment

DoD Software-based System

Program Office

Milestone Reviews with OSD on SwA

Program Protection Plan's

"Application of Software Assurance Countermeasures"

Development Process
Static Analysis
Design Inspection

Code Inspections

Operational System

Redundancy Fault Isolation Least Privilege

CVE CAPEC CWE Pen Test Test Coverage

- Source
- Release Testing
- Generated code inspection

MITRE

Software Assurance Methods

Countermeasure Selection

	Table	5.3-5-5: Applica	tion of Softw	are Assuran	ce Counter	rmeasures (s	ample)				
Development Process	Development Process										
Apply assurance activities to the procedures and structure imposed on	Software (CPI, critical function components, other software)	Static Analysis p/a	Design Inspect	Code Inspect p/a	CVE p/a	CAPEC p/a	CWE p/a	Pen Test	Test Covera p/a		
software development	Developmental CPI SW	100/80%	Two Levels	100/80	100/60	100/60	100/60	Yes	75/50	%	
·	Developmental Critical Function SW	100/80%	Two Levels	100/80	100/70	100/70	100/70	Yes	75/50	%	
Static Analysis p/a	Design Inspect	Code Inspec p/a		CVE p/a	C	APEC p/a		CW p/a		Pen Test	
Operational System			Operatio	nal System				_			
Implement countermeasures to the design and acquisition of end-item		Failover Multiple Supplier Redundancy	Fault Isolation	Least Privilege		Element ation	Inpu checki validat	ng /	SW loa key	d	
software products and their interfaces	Developmental CPI SW	30%	All	all	у	es	All		All		
	Developmental Critical Function SW	50%	All	All	У	es	All		all		
	Other Developmental SW	none	Partial	none	N	one	all		all		
Development Environment	COTS (CPI and CF) and NDI SW	none	Partial	All		one	Wrapp	ers/	all		
			Developmen	t Environm		1	1	-	1		
Apply assurance activities to the environment and tools for developing, testing, and integrating software code	SW Product	Source	Release testing	Generate code inspectio p/a	-						
and interfaces	C Compiler	No	Yes	50/20							
and interfaces	Runtime libraries	Yes	Yes	70/none							
	Automated test system Configuration management system	No No	Yes Yes	50/none NA						-	
	Database	No	Yes	50/none							
	Development Environment Access		Cor	ntrolled acce	ss; Cleare	d personne	l only				

Additional Guidance in PPP Outline and Guidance

Defense Acquisition Guidebook

Your Acquisition Policy and Discretionary Best Practice Guide

- 13.7.3. Software Assurance
- 13.7.3.1. Development Process
- 13.7.3.1.1 Static Analysis
- 13.7.3.1.2 Design Inspection
- 13.7.3.1.3 Code Inspection
- 13.7.3.1.4. Common Vulnerabilities and Exposures (CVE)
- 13.7.3.1.5. Common Attack Pattern Enumeration and Classification (CAPEC)
- 13.7.3.1.6. Common Weakness Enumeration information (CWE)
- 13.7.3.1.7. Penetration Test
- 13.7.3.1.8 Test Coverage
- 13.7.3.2. Operational System
- 13.7.3.2.1. Failover Multiple Supplier Redundancy
- 13.7.3.2.2. Fault Isolation
- 13.7.3.2.3. Least Privilege
- 13.7.3.2.4. System Element Isolation
- 13.7.3.2.5. Input Checking/Validation
- 13.7.3.2.6. Software Encryption and Anti-Tamper Techniques (SW load key)
- 13.7.3.3. Development Environment
- 13.7.3.3.1 Source Code Availability
- 13.7.3.3.2. Release Testing
- 13.7.3.3.3. Generated Code Inspection
- 13.7.3.3.3. Additional Countermeasures

_			
	4. VULNERA	BILITY AND WEAKN	
	Purpose and	l Use	
	-		
		ned vulnerabilities are a major bal of vulnerability managemer	
		of vulnerabilities identifie	
		ption is that vulnerability	
		er asset management). Th	
FY 2013		ility management capabil	
Chief Information Of	ficer	-covering enough of the	
	licer	for a successful attack	evel
Federal Information Security Ma	anagement Act	able to find and fix vulner —has a low enough rate o	Impact Level
		s, to avoid unknown weak	npa
Reporting Metric	S	í l	5
		ge of <u>network boundary d</u>	
		ue to be adequately free	
		ge of hardware assets ide	
		dentifies <u>NIST National V</u> u	
		the organization's enter	• C
		ercentage of hardware as	• v
		he security of the system	b
Prepared by:		······	
US Department of Homeland	Security	Common Vulnerabilitie	• <u>•</u>
Office of Cybersecurity and Comn	nunications	Common vulnerability	
Federal Network Resilien	се	Open Vulnerability and	
		ntage of information syste	
November 30, 2012			<u>See g</u>
			practi
	44 Once all creation	ations are reporting monthly to Q	
	⁴⁵ The presence of	tations are reporting monthly to Q I this question about identifying w	
		e the tools described in section 4	

and remove common weaknesses like register over

from compromising software.

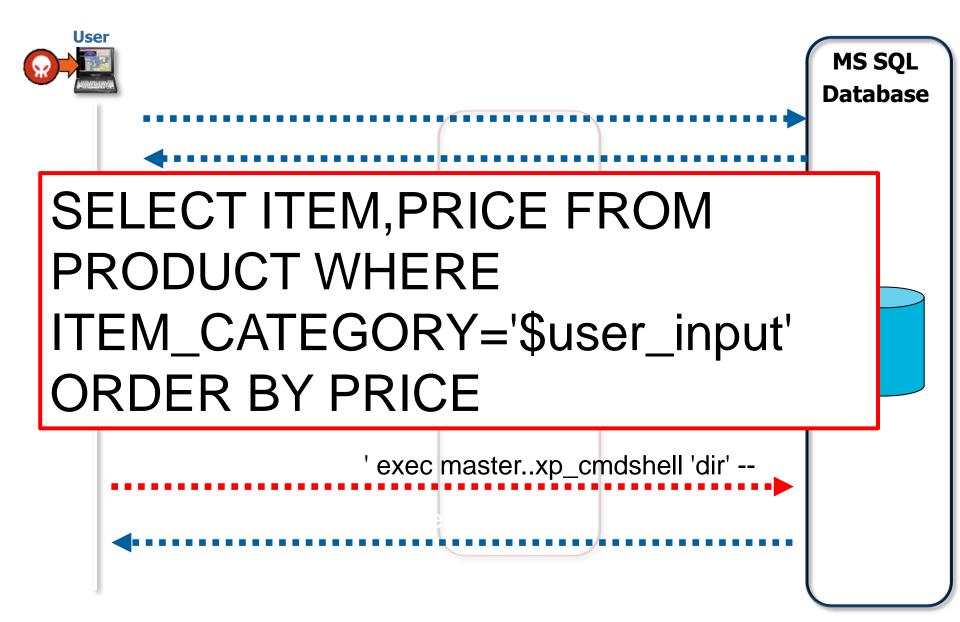

	For systems in de and/or maint	•	For systems in production:							
	Use methods described in Table 9 to identify and fix instances of common weaknesses, prior to placing that version of the code into production.	Can the organization find SCAP compliant tools and good SCAP content?	Report on configuration and vulnerability levels for hardware assets supporting those systems, giving application owners an assessment of risk inherited from the general support system (network).	Can the organization find SCAP compliant tools and good SCAP content?						
High										
Moderate										
Low										

Table 8 – Responses to Question 4.3

Identify Universe Enumeration		Find Instances Tools and Languages	Assess Importance
 Common Weakness Enumeration (CWE) Web scanners for web- based applications 	•	Static Code Analysis tools Manual code reviews (especially for weaknesses not covered by the automated tools)	<u>Common Weakness Scoring</u> <u>System</u> (CWSS)
<u>Common Attack Pattern</u> <u>Enumeration and</u> <u>Classification</u> (CAPEC)	•	Dynamic Code Analysis tools Web scanners for web-based applications PEN testing for attack types not overed by the automated tools.	_
Table 9 - Me	the	s to Identify and Fix Instances of Common	Weaknesses

See guidance that describes the purpose and use of these tools and how they can be used today in a practical way to improve security of software during development and maintenance.

SQL Injection Attack Execution Flow **CAPEC**

Simple test case for SQL Injection

<u>Test Case 1</u>: Single quote SQL injection of registration page web form fields

Test Case Goal: Ensure SQL syntax single quote character entered in registration page web form fields does not cause abnormal SQL behavior Context:

 This test case is part of a broader SQL injection syntax exploration suite of tests to probe various potential injection points for susceptibility to SQL injection. If this test case fails, it should be followed-up with test cases from the SQL injection experimentation test suite.

Preconditions:

- Access to system registration page exists
- Registration page web form field content are used by system in SQL queries of the system database upon page submission
- User has the ability to enter free-form text into registration page web form fields

Test Data:

• ASCII single quote character

Action Steps:

- Enter single quote character into each web form registration page
- Submit the contents of the registration page Postconditions:
 - Test case fails if SQL error is thrown
 - Test case passes if page submission succeeds without any SQL errors

Google Earth

編集(E) 表示(V) ツール(T) 追加(A) ヘルプ(H) ファイル(F)

SQL Injection Probe Detected SQL Injection Detected SQL Injection Probe Detected SQL Injection Probe Detected Linjection Detectes SQL Injection Probe Detected. SOL Injection Probe Detected. SQL Injection Probe Detected. I SQL Injection Probe Detected. SQL Injection Probe Detected QL Injection Probe Detected. SQL Injection Probe Detected. COL Injection Probe Datacted SOL Injection SOL Injection SOL Injection Probe Datacted SOL Injection Probe Datacted SQL Injection Probe Detected. tion Probe Detected. SQL Injection Probe Detected. SQL Injection Detector Probe Detected. SQL Injection Probe Detected.

SOL Injection Probe Detected, SOL Injection Probe Detected. SQL Injection Probe Detected. njection Probe Detected.

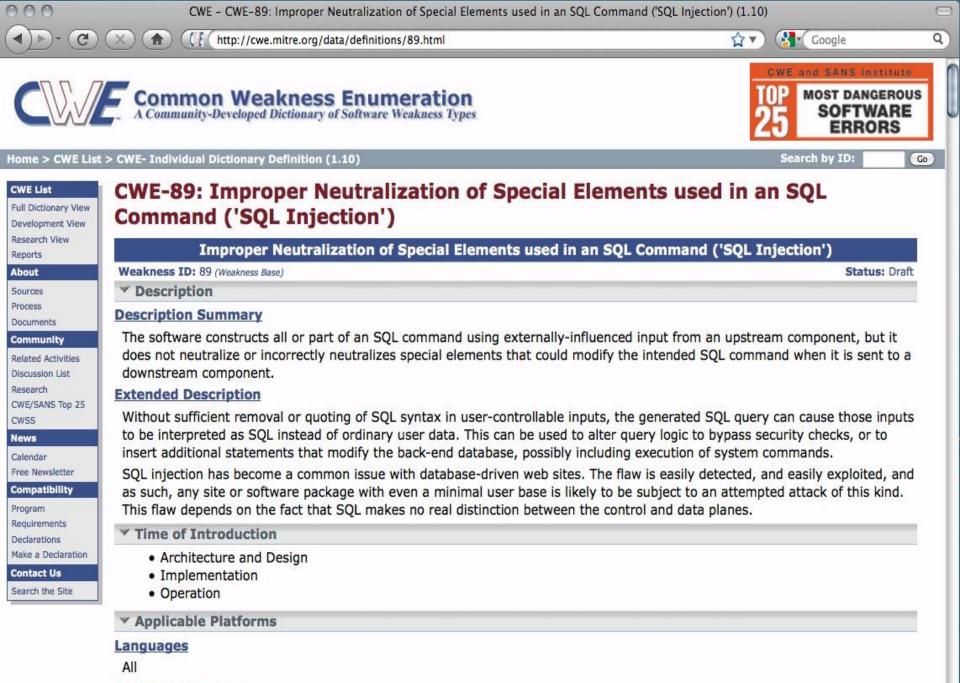
SQL Injection Probe Detected njection Probe Detected SOL Injection Probe Detected. SQL Injection Probe Detected on Detected 4 SOL Injection Detected SOL Injection Probe Detected. SOLINISCTION Probe Detected SQL Injection Probe Detected Linjection Probe Detected. SQL Injection Probe Detected. SQLInjection Detected

> SQL Injection Probe Detected SQL Injection Probe Detected. Sellinfoction Probe Detected.

SQL Injection Probe Detected.

SQL Injection Probe Detected

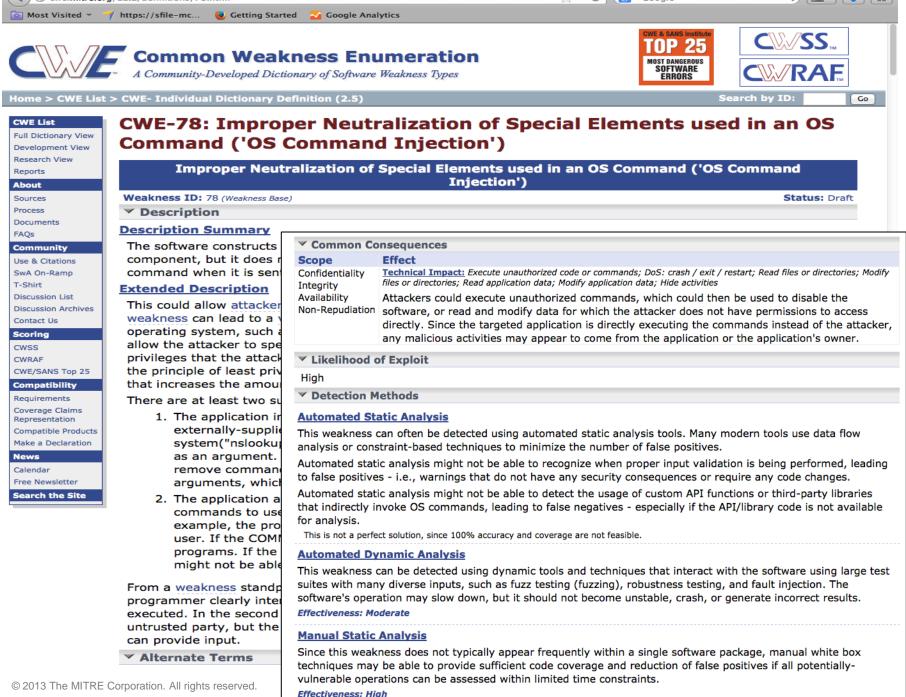
SQL Injection Probe Detected.


SQL Injection Probe Detected

SQL Injection Probe Detected. SQL Injection Probe Detected. SQL Injection Probe Detected.

SQL Injection Probe Detected, SQL Injection Probe Detected. SQL Injection Probe Detected SQL Injection Detected

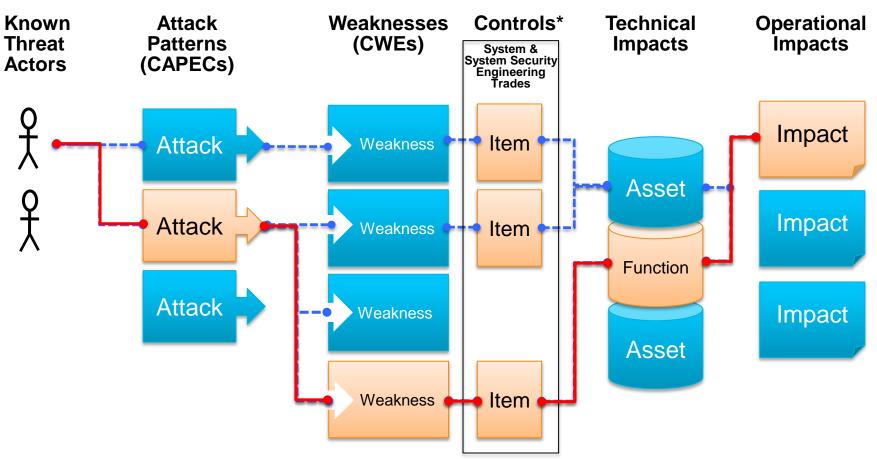
Image IBOAO Image © 2010 TerraMetrics Image USDA Farm Service Agency SOL Injection Broba Detected MSQL Injection (Data SIQ2NGAA, U.S. Navy, NGA, GEBCO



Technology Classes

MITRE Database-Server

😭 ⊽ 🕑 🚺 🕶 Google

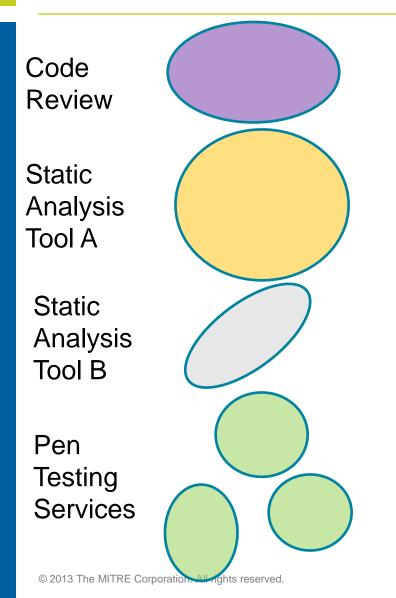


Technical Impacts – Common Weakness Risk Analysis Framework (CWRAF)

- **1. Modify data**
- 2. Read data
- **3. DoS: unreliable execution**
- **4. DoS: resource consumption**
- 5. Execute unauthorized code or commands
- 6. Gain privileges / assume identity
- 7. Bypass protection mechanism
- 8. Hide activities

Engineering For Attack – ISO/IEC Technical Report 20004:

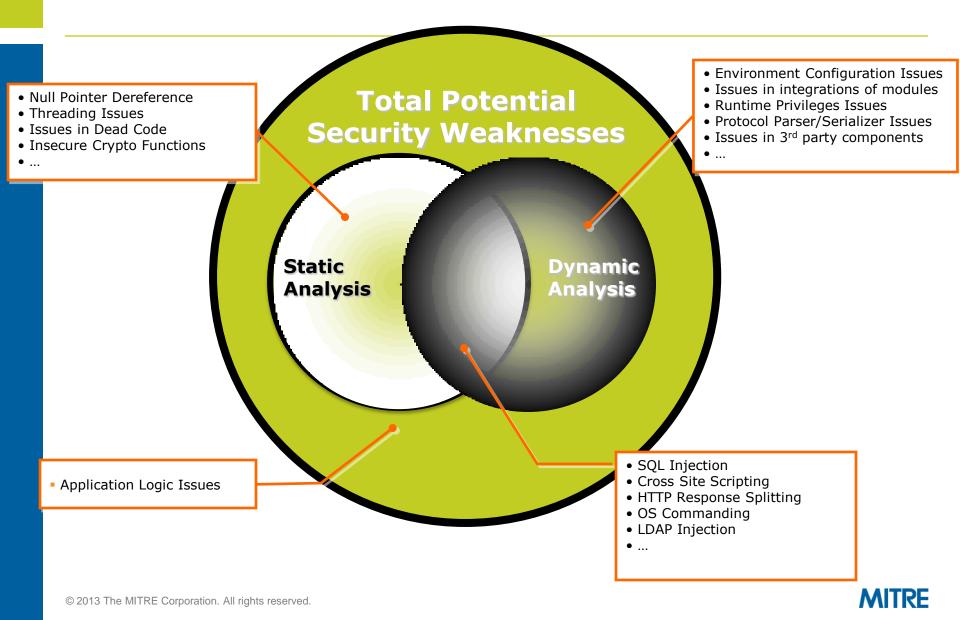
Refining Software Vulnerability Analysis Under ISO/IEC 15049 and ISO/IEC 18045


* Controls include architecture choices, design choices, added security functions, activities & processes, physical decomposition choices, code assessments, design reviews, dynamic testing, and pen testing

© 2013 The MITRE Corporation. All rights reserved.

Utilizing Coverage Claims^[32]

CWE's a capability *claims* to cover



Which static analysis tools and Pen Testing services find the CWE's I care about?

Leveraging and Managing to take Advantage of the Multiple Perspectives of Analysis

33

Leveraging and Managing to take Advantage of the Multiple Perspectives of Analysis

- Different perspectives are effective at finding different types of weaknesses
- Some are good at finding the cause and some at finding the effect

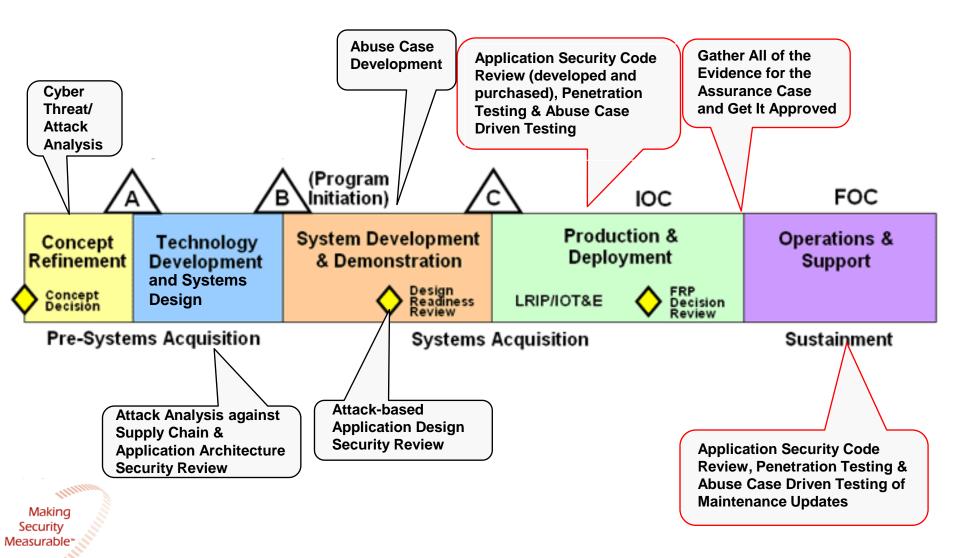
	Static Code Analysis	Penetration Test	Data Security Analysis	Code Review	Architecture Risk Analysis
Cross-Site Scripting (XSS)	Х	X		X	
SQL Injection	Х	X		Х	
Insufficient Authorization Controls		X	X	Х	X
Broken Authentication and Session Management		X	X	Х	X
Information Leakage		X	X		X
Improper Error Handling	Х				
Insecure Use of Cryptography		X		Х	X
Cross Site Request Forgery (CSRF)		X		Х	
Denial of Service	Х	X	Х		X
Poor Coding Practices	X			X	

Notional	Architecture Analy	Design Review	Source Code Static Analysis	Binary Static Analysis	Automated Dynamic Analysis	Penetration Testing	Red Team Assessment
(1) Modify data	ctu			e		St	
(2) Read Data	te	C		00		SY	
(3) DoS: unreliable execution	Archite	sig		5		i Ke	
(4) DoS: resource consumption	Ar	De:		Ō			
(5) Execute unauthorized code or commands	of	nd		Nel		of	
(6) Gain privileges / assume identity	еW	a		Kev		eW	
(7) Bypass protection mechanism						e<	
(8) Hide activities	Rev					Ř	

unal	Vulne	Vulnerability Analysis Focus By Phase and Impact								
Notional	Architecture Analysis	Design Review	Source Code Static Analysis	Binary Static Analysis	Automated Dynamic Analysis	Penetration Testing	Red Team Assessment			
(1) Modify data	CWE-23	CWE-23	CWE-131	CWE-131	CWE-311	CWE-311	CWE-311			
		ve Path ersal		alculation of er Size	Missing Encryption of Sensitive Data					
(2) Read Data	CWE-14	CWE-14	CWE-129	CWE-129	CWE-209	CWE-209				
	Compiler R Buffer C			Validation of y Index	Informa	tion Exposure TI Error Messages	•			
(3) DoS: unreliable	CWE-36	CWE-36	CWE-476	CWE-476	CWE-406	CWE-406	CWE-406			
execution	Absolut Trave			Pointer erence	Network Amplification					
(4) DoS: resource	CWE-395	CWE-395	CWE-190	CWE-190	CWE-412	CWE-412	CWE-412			
consumption	Use NullPointer	-	Integer (┘ ⊃verflow │	Unrestricte	d Externally Acco	essible Lock			
(5) Execute	CWE-88	CWE-88	CWE-120	CWE-120	CWE-120	CWE-79	CWE-79			
unauthorized code or	Argument	t Injection	Buffer Overflow		Cross-site Scripting					
commands										
(6) Gain privileges	CWE-96	CWE-96	CWE-489	CWE-489	CWE-309	CWE-309	CWE-309			
/ assume identity	Static Injec		Leftover D	ebug Code	Use of Pa	ssword System f Authentication	or Primary			
(7) Bypass	CWE-89	CWE-89	CWE-357	CWE-357	CWE-665	CWE-665	CWE-665			
protection mechanism	SQL In	jection		t UI Warning ngerous I	Improper Initialization					
(8) Hide activities	CWE-78	CWE-78	CWE-168	CWE-168	CWE-444	CWE-444	CWE-444			
	OS Com Inject			Handling of sistent	НТТ	P Request Smug	gling			

Impacts by Detection Method

This table is incomplete, because many CWE entries do not have a detection method listed.


Notional

Technical Impact	Automated Analysis	Automated Dynamic Analysis	Automated Static Analysis	Black Box	Fuzzing	Manual Analysis	Manual Dynamic Analysis	Manual Static Analysis	Other	White Box
Execute unauthorized code or commands		<u>78, 120, 129, 131,</u> <u>476, 805</u>	78, 79, 98, 120, 129, 131, 134, 190, 798, 805	<u>79, 129, 134,</u> <u>190, 494,</u> <u>698, 798</u>		<u>98, 120, 131, 190, 494, 805</u>	<u>476, 798</u>	<u>78, 798</u>		
Gain privileges / assume identity			<u>798</u>	<u>259, 798</u>		<u>259</u>	<u>798</u>	<u>798, 807</u>	<u>628</u>	
Read data	<u>209, 311, 327</u>	$\frac{78, 89, 129, 131}{209, 404, 665}$	<u>78, 79, 89, 129, 131, 134, 798</u>	<u>14, 79, 129, 134, 319, 798</u>		<u>89, 131, 209,</u> <u>311, 327</u>	<u>209, 404, 665,</u> <u>798</u>	<u>78, 798</u>		<u>14</u>
Modify data	<u>311, 327</u>	<u>78, 89, 129, 131</u>	<u>78, 89, 129, 131, 190</u>	<u>129, 190, 319</u>		<u>89, 131, 190,</u> <u>311, 327</u>		<u>78</u>		
DoS: unreliable execution		$\frac{78, 120, 129, 131}{400, 476, 665, 805}$	<u>78, 120, 129, 131, 190, 400, 805</u>	<u>129, 190</u>	<u>400</u>	$\frac{120, 131, 190}{805},$	<u>476, 665</u>	<u>78</u>		
DoS: resource consumption		$\frac{120, 400, 404, 770}{805}$	<u>120, 190, 400, 770,</u> <u>805</u>	<u>190</u>	<u>400,</u> <u>770</u>	<u>120, 190, 805</u>	<u>404</u>	<u>770</u>		<u>412</u>
Bypass protection mechanism		<u>89, 400, 665</u>	<u>79, 89, 190, 400, 798</u>	<u>14, 79, 184,</u> <u>190, 733, 798</u>	<u>400</u>	<u>89, 190</u>	<u>665, 798</u>	<u>798, 807</u>		<u>14, 733</u>
Hide activities	327	<u>78</u>	<u>78</u>			327		<u>78</u>		
Other		400, 404	<u>400, 798</u>	<u>198, 484,</u> <u>494, 698,</u> <u>733, 798</u>	400	<u>494</u>	<u>404, 798</u>	<u>596, 798,</u> <u>807</u>	<u>628</u>	<u>484,</u> 733

Planning to Leverage "State of the Art Resource" (SOAR): Software Table of "Verification Methods"

DA	Appendia I	Software State-of-the-Art	Resources (SCAR) Matrix	

SwA and Systems Development (example)

and a

Cross-site Scripting (XSS) Attack (CAPEC-86)

Improper Neutralization of Input During Web Page Generation (CWE-79)

Security Feature

SQL Injection Attack (CAPEC-66)

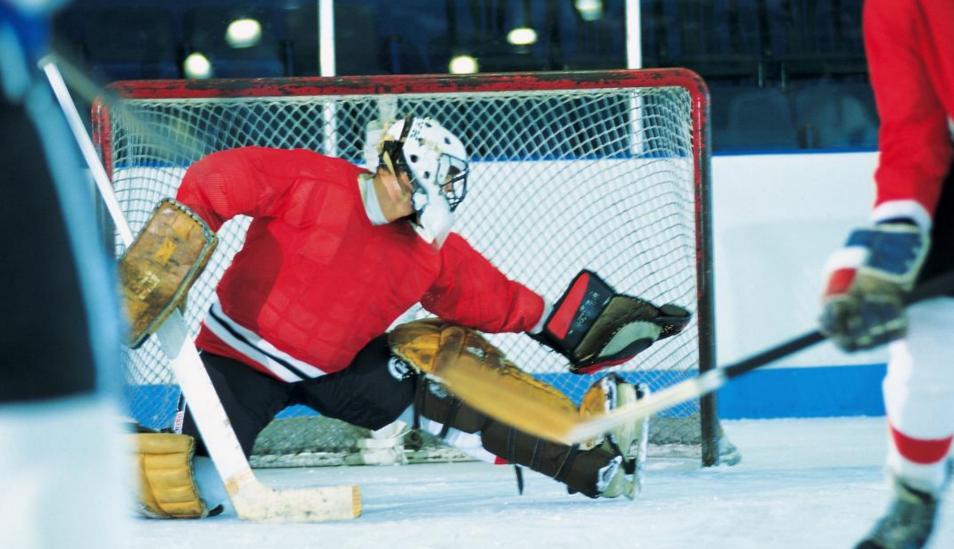
Improper Neutralization of Special Elements used in an SQL Command (CWE-89)

Software, Network Traffic, Physical, Social **Engineering, and Supply Chain Attack Patterns**

APEC Common Attack Pattern Enumeration and Classification A Community Knowledge Resource for Building Secure Software

Home > CAPEC List > CAPEC-1000: Mechanism of Attack (Release 1.7.1)

CAPEC List	CAPEC-	100(0: M	lechanism of Attack		Definition	Graph	List	Slice	XML.zip				
Full CAPEC Dictionary Methods of Attack View				Mechanism of A	ttack									
Reports	View ID: 10	View ID: 1000 (View: Graph)												
About CAPEC Documents		View Data												
Resources	View Struc	w Structure: Graph												
Community		ew Objective												
Related Activities Collaboration List	✓ Relation		s											
T-Shirt		Туре		Name	Description					V				
News & Events	HasMember	۲	118	Data Leakage Attacks						1000				
Calendar	HasMember	۲	119	Resource Depletion						1000				
Free Newsletter	HasMember	۲	152	Injection (Injecting Control Plane content through the Data Plane)						1000				
Compatibility	HasMember	۲	156	Spoofing						1000				
Program	HasMember	۲	172	Time and State Attacks						1000				
Requirements Make a Declaration	HasMember	۲	210	Abuse of Functionality						1000				
Contact Us	HasMember	۲	223	Probabilistic Techniques						1000				
Search the Site	HasMember	۲	225	Exploitation of Authentication						1000				
	HasMember	۲	232	Exploitation of Privilege/Trust						1000				
	HasMember	۲	255	Data Structure Attacks						1000				
	HasMember	۲	262	Resource Manipulation						1000				
	HasMember	Α	286	Network Reconnaissance						1000				
	HasMember	A	403	Social Engineering Attacks						1000				
	HasMember	۲	436	Physical Security Attacks						1000				
	HasMember	A	437	Supply Chain Attacks						1000				


	CAPECs in this view		Total CAPECs
Total	412	out of	474
Views	0	out of	6
Categories	19	out of	68
Attack Patterns	400	out of	400

Page Last Updated: May 04, 2012

Search by ID:

Go

Sharing knowledge of our opponents and watching the plays develop, we can make the saves that protect our **net**works and the software running on them.

CWE List

Reports

About

Sources

Process

FAQs

T-Shirt

Scoring

CWSS

CWRAF

News

Calendar Free Newsletter Search the Site

Documents

Community

SwA On-Ramp

Discussion List

Discussion Archives Contact Us

CWE/SANS Top 25 Compatibility

Requirements

Coverage Claims

MITRE

Compatible Products Make a Declaration

Representation

Full Dictionary View

Development View

Research View

M

Go

Common Weakness Enumeration

Community-Developed Dictionary of Software Weakness Types

Home > Community > Software Assurance

Section Contents

Search by ID:

Software Assurance

Engineering for Attacks Software Quality Prioritizing Weaknesses Manageable Steps Pocket Guides Staying Informed Finding More Information **Other Items of Interest**

Discussion List CWE Newsletter Terms of Use

Getting Started in Software Assurance (SwA)

Recognizing that your software environment and program's software supply chain has weaknesses that may be exploited by attackers as operational vulnerabilities is a major step in securing your software supply chain. However, this step pales in comparison to the enormity of securing the entire supply chain for your software. The key to improving your software assurance is to make incremental improvements in the security of the software in your supply chain. No single remedy will absolve or mitigate all of the weaknesses in your software, or the risk. Several methods, tools, and culture changes will be required in concert to build a secure supply chain to cover the known-unknown weaknesses. There is no crystal ball, or magic wand, you can use to ensure your software is absolutely secure against the unknown-unknown weaknesses. However, you can take steps to reduce the risk and exposure of your software and users to new, or existing, software vulnerabilities.

This section of the CWE Web site introduces specific steps you can take to assess your individual software assurance situation and compose a tailored plan to strengthen your assurance of the integrity, reliability, and robustness of your software supply chain. Learn more by following the links below:

- Engineering for Attacks
- Software Quality

+

- Prioritizing Common Weaknesses Based Upon Your Environment
- Manageable Steps
- Software Assurance Pocket Guide Series
- Staying Informed
- Finding More Information about Software Assurance

Page Last Updated: May 13, 2012

CWE is co-sponsored by the office of Cybersecurity and Communications at the U.S. Department of Homeland Security.

This Web site is sponsored and managed by The MITRE Corporation to enable stakeholder collaboration. Copyright © 2006-2013, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.

Privacy policy Terms of use Contact us

Questions?

ramartin@mitre.org

