Modeling and Simulation

More Critical Than Ever in a Challenging Environment

Frank Russ

October 2013
The Need for Modeling and Simulation

★ External Factors
 – Increasing Mission Complexity
 • Rapid What-if Scenarios
 – Declining Customer Budgets
 – Drive Toward FFP Contracts
 – Affordability
 – Long Range Planning Challenges

★ Internal Factors
 – Solution Credibility
 – Program Execution Risk
 – Affordability
 – Design to Cost
 – Dispersed Workforces
DOD Budget Outlook

Defense Budgets Past and Future (Base Budget)

Total -$1,079B

Ten-Yr Reductions (FY12-21)

<table>
<thead>
<tr>
<th>Budget</th>
<th>Total Cut In All Budgets</th>
<th>Added In This Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB13</td>
<td>-$577</td>
<td>-$90</td>
</tr>
<tr>
<td>PB14</td>
<td>-$1,079</td>
<td>-$502</td>
</tr>
<tr>
<td>PB14 with BCA</td>
<td>-$1,079</td>
<td>-$502</td>
</tr>
</tbody>
</table>
Modeling and Simulation Applications

★ Metric/Statistical Models
 – IT Services Optimizations
 – IT Transformations

★ Business Process Modeling
 – Manufacturing Line Process Flows (Discrete Event)

★ Sustainment System Affordability Models
 – Integrated Logistics Affordability Optimizations

★ Mission Performance Models
 – Global Communications Modeling
Rapid Modeling and Simulation Methodology

1. Define Model Structure Based on Enterprise
2. Validate the Model Against the As-Is Baseline
3. Right Size Staffing for the To-Be Baseline
4. Introduce Innovations to Improve Productivity or Increase Workload
5. Continuous Model Refinement Using Metrics

- The Approach is Not Trivial...But it is Repeatable
- It Requires Skilled Staff to Implement
- It Provides Cost Estimation Credibility...And Supports Ongoing Enterprise Analysis
Problem Complexity

★ Why not prototype?

– Prototypes can be very expensive and may not accurately simulate the system
– Access to the systems’ inputs and outputs may be difficult to achieve or be non-existent
– Limited Availability to conduct What-if Analyses

★ Customer Mission Complexity is Rapidly Increasing

– Assets that support these missions are growing more complex at an equal or faster rate

★ Degrees of Variation are too broad for traditional methods to work

★ Optimized is in the eye of the Beholder

– Customer priorities, contractual requirements, budgets

Discover Hidden Performance Optimizations Through M&S and Expert Analyses
Enterprise IT Workflow Case Study

★ Challenge

– Maintain or Exceed SLA performance while simultaneously increasing productivity and reducing cost

★ Approach

– Model Specific Enterprise Workflows
– Validate
– Apply Business Innovations
– Optimize on Customer Best Value

★ Result

– 58% Cost Takeout
Enterprise IT Workflow Case Study
Simulation Output Analysis – Help Desk

Baseline Scenario – Staffing Based on Standard Metrics

- 12 FTE Help Desk Agents – 100% Utilization
 - 5 Morning shift personnel
 - 4 Afternoon shift personnel
 - 2 Overnight/Weekend shift personnel
 - Understaffed

- 16 FTE Help Desk Agents – 80% Utilization
 - 8 Morning shift personnel
 - 6 Afternoon shift personnel
 - 2 Overnight/Weekend shift personnel
 - Optimally Staffed

Optimal Sizing – Based on 80% Utilization

- Median Call Answer Time: 1.1 Hour
- 90% Call Answer Time: 3.8 Hours
- Median Call Answer Time > 1 Hour
- Understaffed

- Median Call Answer Time: 42 Seconds
- 90% Call Answer Time: 7.6 Minutes
- Optimally Staffed

Optimal Sizing – Based on 80% Utilization
Simulation Output Analysis – Break-Fix

- **Baseline Scenario – Staffing Based on Standard Metrics**
 - 20 Morning shift personnel
 - 17 Afternoon shift personnel
 - 6 Overnight/Weekend shift personnel
 - 44 FTE Break-Fix Techs – 51% Utilization

- **Optimal Sizing – Based on 90% Utilization**
 - 11 Morning shift personnel
 - 11 Afternoon shift personnel
 - 3 Overnight/Weekend shift personnel
 - 24 FTE Break-Fix Techs – 90% Utilization

- **Equations**
 - Median Return to Service: 1 Hour
 - \[\pi(50) = \frac{E[s]}{c(1 - \rho)} \ln \left(\frac{100C(c,u,\rho)}{100 - 50} \right) \]
 - 90% Return to Service: 1 Hour
 - \[\pi(90) = \frac{E[s]}{c(1 - \rho)} \ln \left(\frac{100C(c,u,\rho)}{100 - 90} \right) \]
 - Median Return to Service: 3.2 Hours
 - Optimally Staffed
 - 90% Return to Service: 8.9 Hours

- **Overstaffed**
- **Optimally Staffed**
Innovation With Purpose

Design to Cost and Value Optimization

Innovations

Business Innovation 1
Business Innovation 2
Business Innovation 3
Business Innovation 4
Business Innovation 5
Business Innovation 6
Business Innovation 7
Manufacturing Process Optimization Case Study

★ Challenge

– Can LNG tanks be produced at the right price points, and delivered on the required schedule
– Where are the productivity bottlenecks that prevent meeting the business objectives

★ Approach

– Model the manufacturing line process detailing required resources, including human, capital, and facilities. Determine system throughput.
– Add a second processing line and update the models to include resource contention and evaluate impacts to throughput
– Develop an integrated labor/cost modeling tool for rapid ROM preparation

★ Result

– Rapid response to new orders
– Easily assess value to changes in the flow or adding additional capacity
Liquid Natural Gas Tank Manufacturing Model
Affordability Analysis Process Flow

- **Perform**: People, Programs, Products
- **Collect**: Logistics System Design – East, Engineering, Logistics System Design
- **Payload Operations**: Military Platform Ops
- **Analyze**: Programs, People, Products
- **Evaluate**: Dashboard (Graphs, Charts, Statistics)
Architecture Performance Analysis Case Study

Recent Proposal Past Performance

<table>
<thead>
<tr>
<th>Program</th>
<th>% Reduction In Spares</th>
<th>% Reduction In Total Support Costs (Including Warranty)</th>
<th>Total Recommended Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program A</td>
<td>68.0%</td>
<td>48.9%</td>
<td>(> $10M)</td>
</tr>
<tr>
<td>Program B</td>
<td>49.1%</td>
<td>65.1%</td>
<td>(> $85M)</td>
</tr>
<tr>
<td>Program C</td>
<td>58.9%</td>
<td>44.1%</td>
<td>(> $10M)</td>
</tr>
<tr>
<td>Program D</td>
<td>N/A</td>
<td>44.0%</td>
<td>(> $137M)</td>
</tr>
<tr>
<td>Program E</td>
<td>-41.3%</td>
<td>29.8%</td>
<td>(> $2M)</td>
</tr>
<tr>
<td>Program F</td>
<td>58.9%</td>
<td>7.2%</td>
<td>(> $1.5M)</td>
</tr>
</tbody>
</table>
GCM Models Enterprise-Wide Comms

GCM updating MILSATCOM AoA since 2009: new scenarios, AEHF options, ACNs.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Messages</th>
<th>% Benign</th>
<th>0%</th>
<th>5%</th>
<th>23%</th>
<th>64%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Defense/Management</td>
<td>35,464</td>
<td>2%</td>
<td>13%</td>
<td>11%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>EDA</td>
<td>6,908</td>
<td>4%</td>
<td>8%</td>
<td>5%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>CDR Guidance</td>
<td>14,068</td>
<td>0%</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>CDR Information Requests</td>
<td>21,322</td>
<td>3%</td>
<td>12%</td>
<td>16%</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>CM Affairs</td>
<td>1,970</td>
<td>0%</td>
<td>4%</td>
<td>23%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Collaboration</td>
<td>36,196</td>
<td>2%</td>
<td>13%</td>
<td>12%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Combat Support Systems</td>
<td>45,800</td>
<td>1%</td>
<td>15%</td>
<td>9%</td>
<td>11%</td>
<td>10%</td>
</tr>
<tr>
<td>Commander Orders</td>
<td>37,260</td>
<td>4%</td>
<td>16%</td>
<td>13%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>Coordination</td>
<td>69,206</td>
<td>2%</td>
<td>10%</td>
<td>3%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>COP</td>
<td>247,976</td>
<td>4%</td>
<td>32%</td>
<td>13%</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>Enemy Reporting</td>
<td>10,817</td>
<td>2%</td>
<td>29%</td>
<td>19%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Fire Support</td>
<td>150,786</td>
<td>2%</td>
<td>14%</td>
<td>13%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>FRAGOS</td>
<td>15,331</td>
<td>3%</td>
<td>12%</td>
<td>11%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>INTEL</td>
<td>56,570</td>
<td>2%</td>
<td>13%</td>
<td>12%</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>MSC-DC</td>
<td>4,410</td>
<td>0%</td>
<td>4%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Mission Planning</td>
<td>16,647</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>NBC</td>
<td>891</td>
<td>2%</td>
<td>12%</td>
<td>3%</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Netcentric/Network Data</td>
<td>46,912</td>
<td>1%</td>
<td>33%</td>
<td>23%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>GPlANS</td>
<td>8,468</td>
<td>1%</td>
<td>9%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>110,443</td>
<td>2%</td>
<td>7%</td>
<td>5%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Sensors</td>
<td>129,672</td>
<td>1%</td>
<td>20%</td>
<td>9%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Situation Awareness</td>
<td>99,342</td>
<td>4%</td>
<td>18%</td>
<td>14%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>SOR</td>
<td>106</td>
<td>0%</td>
<td>18%</td>
<td>5%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Weather</td>
<td>544</td>
<td>0%</td>
<td>8%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

No HALE ACNs

With 3 HALE ACNs in Theater

© 2013 Lockheed Martin Corporation. All Rights Reserved.
Army Research Lab High-Performance Computing (ARL HPC) cluster runs high-fidelity netcentric communications models.

April ‘13 OSD and ARL determined that GCM would be the best way to flexibly and rapidly build large, relevant scenarios for their HPC-based communications modeling, including:

- Unit locations and movements
- Network topologies
- Network traffic

IS&GS working with OSD and ARL to enhance their comm modeling capability for XDR and Link-16 on the path toward a JALN Architecture Research Testbed (JART).
Modeling and Simulation Summary

- Models provide a degree of flexibility to model virtually any customer problem.
- Modeling first can save cost, burn down risk, and reduce schedule uncertainty.
- Modeling and Simulation can be applied in a multitude of ways to deliver real customer value.
- Traditional methods won’t address the degrees of variability or system uniqueness.
- Models provide customer’s and business with rapid “What-if” capability for Long Range Planning.