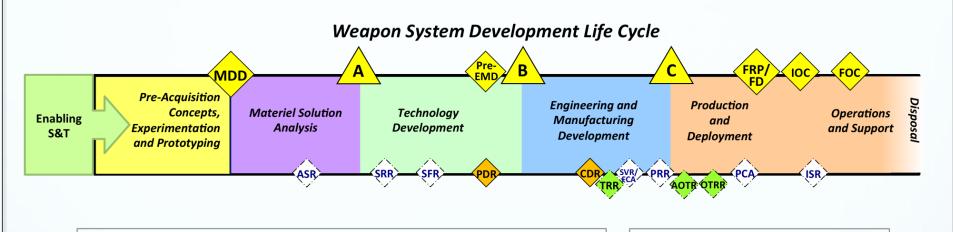


Toward a More Agile Systems Engineering Technical Review Process

Jason R. Morris, Dr. Thomas Holzer, Dr. Timothy Eveleigh, Dr. Shahryar Sarkani

George Washington University


Overview

- Background
- Traditional and Agile approach
- Case Studies
- Conclusion

Background

- Use of Agile methodologies become hindered when subject to traditional Systems Engineering Technical Review (SETR) processes
- A new Agile SETR process is needed
- Researching best overall approach to implementing Agile methodologies while still capturing the essentials of the SETR process.

Traditional Review Process

AOTR - Assessment of Operational Test Readiness

ASR - Alternative Systems Review

CDR - Critical Design Review

EMD - Engineering and Manufacturing Development

FCA - Functional Configuration Audit

FD - Full Deployment

FOC - Full Operational Capability

FRP - Full-Rate Production

IOC - Initial Operational Capability

ISR - In-Service Review

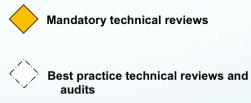
MDD - Materiel Development Decision

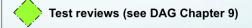
OTRR - Operational Test Readiness Review

PCA - Physical Configuration Audit

PDR - Preliminary Design Review

PRR - Production Readiness Review

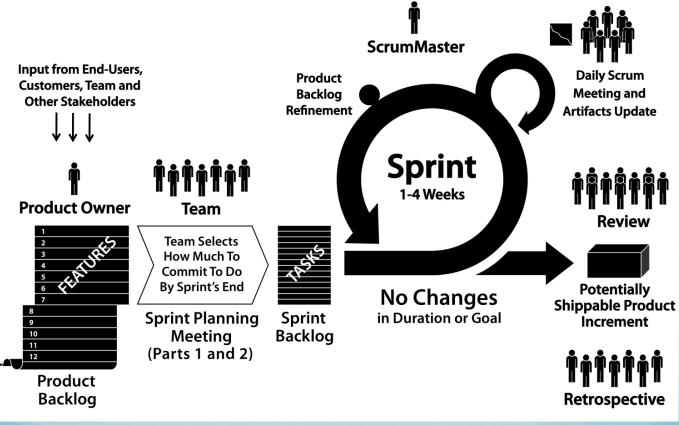

S&T - Science and Technology


SRR - System Requirements Review

SFR - System Functional Review

SVR - System Verification Review

TRR - Test Readiness Review

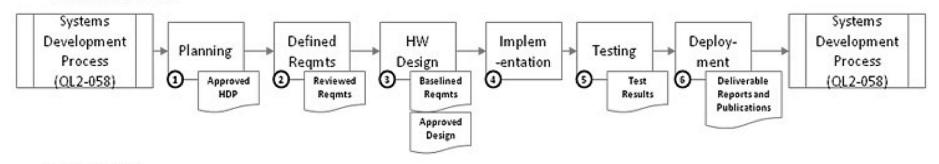


Reference: Defense Acquisition Guide Chapter 4 Section 4.2.1

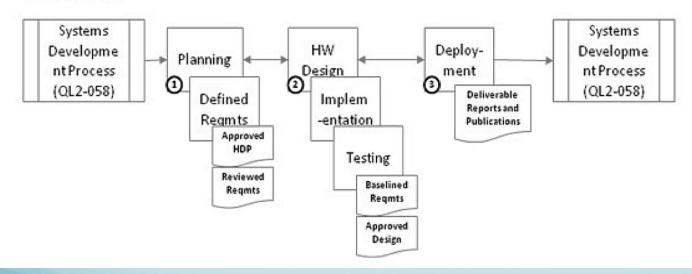
Agile Methodology

SCRUM

Reference: Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2010). The scrum primer.


Multi-Mission Bus Demonstrator (MBD) Case Study

- Commercial Satellite program under Johns Hopkins University Applied Physics Laboratory (JHU/APL)
- CubeSat standards
- Agile Systems Engineering
 - Fraction of cost of traditional process
 - Comparable performance
- MBD sponsor did not require normal NASA processes


Reference: Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012). Agile hardware and software system engineering for innovation (pp. 1–10). Presented at the Aerospace Conference, 2012 IEEE, IEEE. doi:10.1109/AERO.2012.6187425

MBD Agile Systems Engineering Process vs Traditional Process

Traditional Process:

MBD Process:

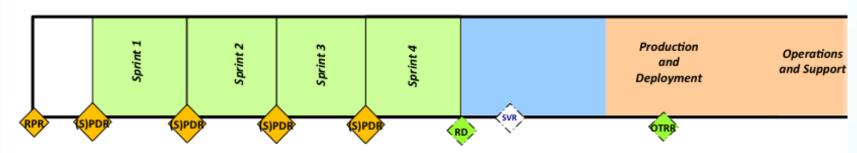
Reference: Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012). Agile hardware and software system engineering for innovation (pp. 1–10). Presented at the Aerospace Conference, 2012 IEEE, IEEE. doi:10.1109/AERO.2012.6187425

MBD Review Process

- Performed a single review
 - Only Design Review (ODR)
 - Conducted multiple informal reviews
- Schedule of 14 Months
- Budget of \$10 Million
- Project was successful
 - Implemented Agile methods
 - Created updated SETR process
 - Met Cost, Schedule, and Performance
 - Did not sacrifice Engineering Management reviews

Reference: Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012). Agile hardware and software system engineering for innovation (pp. 1–10). Presented at the Aerospace Conference, 2012 IEEE, IEEE. doi:10.1109/AERO.2012.6187425

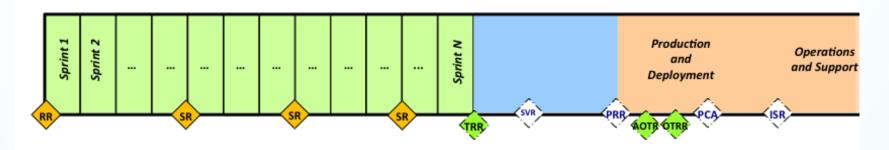
DOD Agile and SETR Background


- Projects under the United States Department of Defense (DOD) are governed by law and policy
 - DODI 5000.02 governs Acquisition of Defense Systems
- Each military service implements policy that requires the use of a SETR process
 - Implementing Agile methods becomes difficult when subject to strict processes
- Some military services have implemented pilot programs to allow for Agile methods

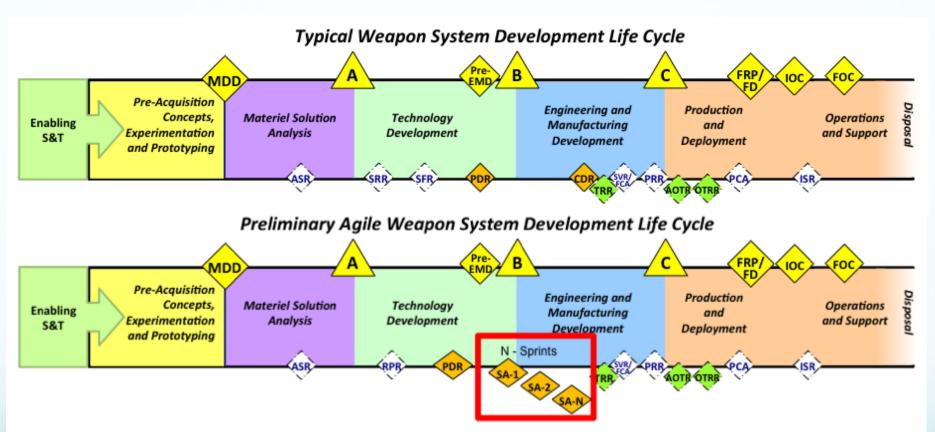
DOD Case Studies

- Research of Agile methods with SETR processes being conducted
 - Multiple military services are being considered with projects from each service
- Service | Project A
 - Large DOD Project with Budget >\$140 Million
 - Pilot program for Agile Software Engineering
 - Obtained permission from leadership to deviate from normal SETR process
- Service II Project B
 - Medium sized DOD Project with Budget of around \$100 Million
 - Software Database system that collects health and status information on Major US Weapons Systems
 - Obtained permission from leadership to deviate from normal SETR process post traditional CDR

DOD Service I Project A Agile SETR Process


Service I Project A Weapon System Development Life Cycle

- Release Planning Review (RPR) vice SRR and SFR
- Sprint Preliminary Design Review (S)PDR vice PDR
 - Performed prior to each Sprint
 - Limited participation to must have personnel
- Removed CDR using Daily Build/Test/Integration cycle as alternative
- Release Demonstration (RD) vice TRR
- Performed a typical SVR and OTRR on final release roughly every 4th Sprint


DOD Service II Project B Agile SETR Process

Service II Project B Weapon System Development Life Cycle

- Sprint Audits performed every 4th Sprint
 - Independent Senior Engineer
 - Ensure review of process
- Final build used traditional SVR and TRR

Preliminary Agile SETR Process

- Use Release Planning Review (RPR) in place of SRR/SFR
- Perform Sprint Audits (SA) for N Sprints determined at PDR
- CDR not required
- All other reviews are unchanged

Tenants of the Preliminary Agile SETR Process

- Define Requirements at Release Reviews
- Sprint Audits align with Agile methods
- CDR covered using Sprints
- Test and Production reviews unchanged
- Allows for multiple iterations

Conclusions

- Implementing an Agile SETR process allows for use of Agile Methods while keeping the value of a traditional review process
- Commercial and Government projects can benefit from a new Agile SETR process
- Leaders can leverage research to implement an Agile SETR process within their organization

Future Work

- Measure, evaluate and document process improvements
- Continue collection of Case Studies
- Perform detailed interviews to capture tenants
 - Good changes to the SETR process
 - Bad changes to the SETR process
- Finalize Agile SETR process for Leadership implementation

References

- Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2010). The scrum primer.
- Defense Acquisition Guide Chapter 4 Section 4.2.1
- DODI 5000.02, AT&L, U. (2008). INSTRUCTION, 1–80.
- Huang, P. M., Darrin, A. G., & Knuth, A. A. (2012). Agile hardware and software system engineering for innovation (pp. 1–10). Presented at the Aerospace Conference, 2012 IEEE, IEEE. doi:10.1109/AERO.2012.6187425

Contact Information

- Jason Morris
- George Washington University Doctoral student
- Email: <u>jmort66@gwu.edu</u>