

An Initial Evaluation of Several **Promising High Blast Explosives**

Authored by: **Paul Braithwaite** ATK Aerospace Group Paul.Braithwaite@ATK.com

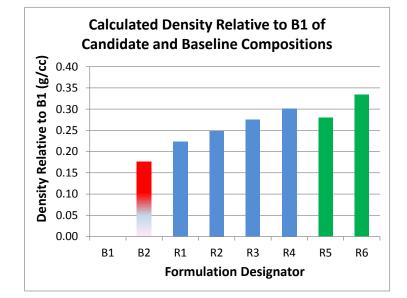
Prepared for: 2013 NDIA IM/EM Symposium San Diego, California

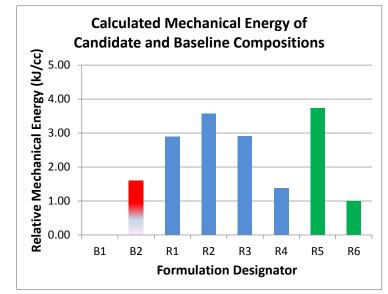
7 - 10 October 2013

Outline

- Overview and introduction
- Theoretical studies
- Safety and handling properties
- Test methodology
- Test results
- Summary and conclusions

- Blast explosives are used in many commercial and military applications
 - Building demolition, runway cratering, quarrying, etc.
- Blast explosives often utilize aluminum to increase temperature, blast, and impulse
- A challenge associated with aluminized blast explosives is to formulate them in such a manner that the aluminum reacts during the early stages of the explosive event
 - This is a particularly challenging problem for small and medium sized articles
- This paper presents results of an interesting study that examines the role of specific formulation changes on blast explosive performance

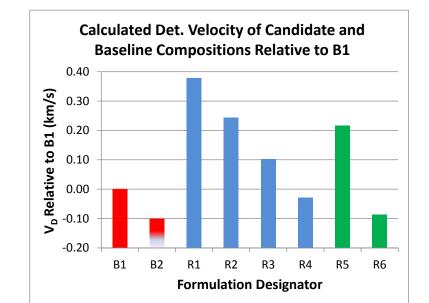

- A single formulation family was evaluated during this study
 - Binder system, explosive content, and total solids were held constant
 - A single grade of aluminum was used in all formulations
 - All research compositions utilized a solid oxidizer
 - Oxygen balance was varied by changing the ratio of aluminum to oxidizer
 - Several different solid explosives were evaluated in the formulation family
- Theoretical results were compared with two baseline aluminized explosives to ensure the new formulations had predicted properties in a reasonable range
 - Six representative research explosives were selected from a larger group for discussion in this paper

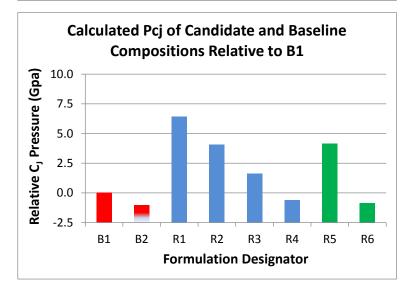

Predicted Density and Mechanical Energy

- Density of candidate research explosives was universally higher than the baseline compositions
- Mechanical energy varied with formulation detail
 - Research explosives were predicted to have equal to or better mechanical energy than baseline compositions

Formulation notes

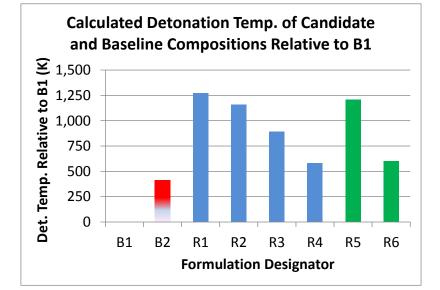
- B1 contains Al
- B2 contains AI and an oxidizer
- R1 through R4 used explosive 1
- R5 and R6 used explosive 2

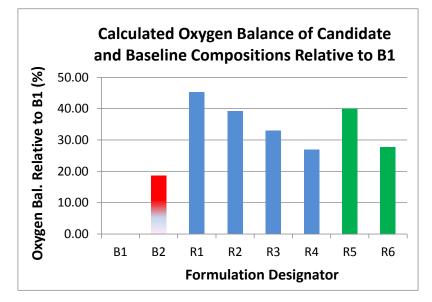




Detonation Velocity and Pressure

- Explosives were formulated so the research and baseline compositions had similar calculated detonation velocities
 - Range was 0.48 km/sec
- Calculated detonation pressures for research explosives were generally higher than baseline compositions and decreased as aluminum was added
 - Calculated pressures are in the expected ranges



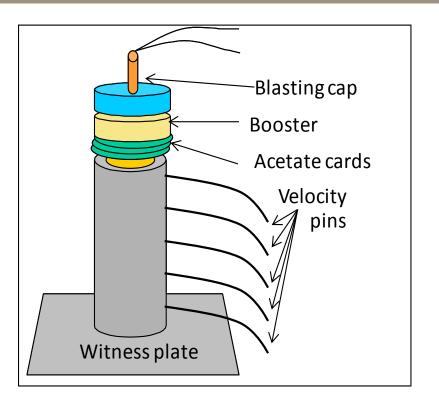


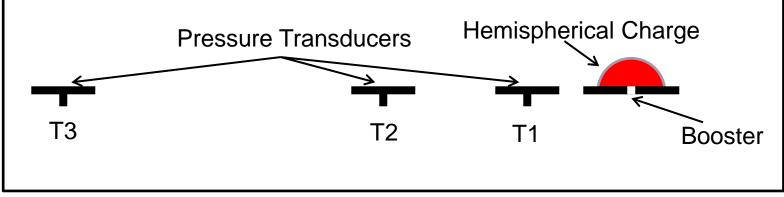
Oxygen Balance and Detonation Temperature

- Oxygen balance for the research explosives was more favorable than baseline compositions
 - Reference oxygen balance for well known materials:
 - TNT: -74.0%
 - NG: 3.5%
 - AN: 20.0%
- Predicted detonation temperatures for research formulations were higher than for baseline compositions
 - Expected to aid in aluminum combustion

APPROVED FOR PUBLIC RELEASE

6


- Small-scale safety testing was performed on several of the research explosives and the two baseline compositions
- Results indicate all compositions are safe to process
 - Research explosives have lower thermal stability than baseline compositions but all exotherms are in the expected range

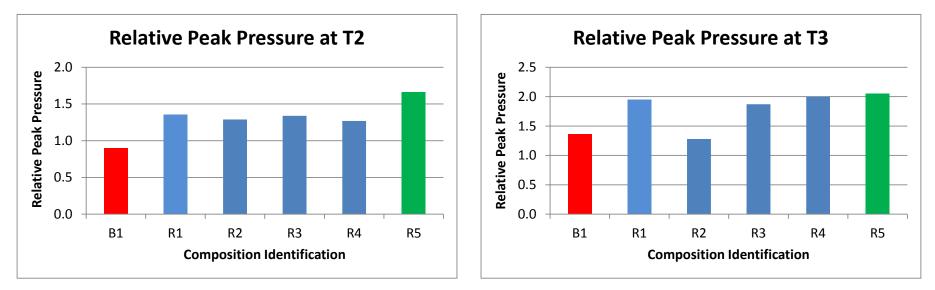

Formulation	ABL Impact (cm)	ABL Friction (lb @ ft/s)	ESD (J)	SBAT (°F)
B1	80	800 @ 8	8	322
B2	13	25 @ 8	8	332
R1	17	25 @ 8	8	263
R2	11	50 @ 4	8	272
R3	21	50 @ 6	8	263
R5	11	100 @ 4	8	272
R6	17	25 @ 8	8	268

Test Methodology

- Two different tests were selected to generate initial performance data on selected candidate compositions
 - Detonation velocity in standard LSGT tubing and hemispherical detonation
 - Samples of B1 were also tested at the same time to improve our ability to compare test results

- Detonation velocity was checked on three research compositions (R2, R4, and R6) and baseline composition B1
- Results for all research explosives were very close to the predicted values
 - Calculations under predicted Vd for the baseline explosive but were in good agreement (+0.08 mm/ μ sec) with literature values for this explosive composition

Explosive	Calculated Detonation Velocity Relative to B1 (mm/μ sec)	Measured Detonation Velocity Relative to B1 (%)	Calculated - Experimental Velocity (mm/μ sec).
B1	0.00	100.0	0.66
R2	0.24	94.9	0.03
R4	-0.03	90.1	-0.07
R6	-0.09	89.2	-0.08



- Hemispherical charges of one baseline explosive, B1, and five research compositions, R1 through R5, were prepared
 - All charges had similar masses & were initiated with a standard charge
 - All explosives processed well and the resulting charges had densities above 99% of their theoretical maximum density
- Testing was performed at ATK's Northern Utah explosive test facility


- Peak pressures at both T2 and T3 transducer locations for the research explosives were nearly all higher than for the baseline composition
 - R5 had a peak pressure more than 1.5 times that of B1
 - Trend of decreasing P_{CJ} with higher aluminum content was not observed
 - Results at T1 are not reported due to test difficulties

Positive Impulse

- With the exception of impulse data for R1 at T3, all measured impulse values for the research explosives were substantially greater than for B1
 - R5 was again the top performer with a relative positive impulse more than three times greater than B1
 - Appears to be a trend of increasing impulse with increasing aluminum level for explosives R1 through R4 close to charge

Application

- Data generated in subscale tests were used to select a composition for a small prototype warhead
- Results were most impressive!

Summary

- Formulation approach was found to be a very useful tool when developing new high blast compositions
- Subscale test results gave promising results that translated well into the selection of an explosive for a small prototype warhead
 - Results support further development of this formulation line
- Additional testing is needed to verify that the large improvement in performance is realized in large-scale articles