IMX-104 Manufacturing Process Optimization

Insensitive Munitions & Energetic Materials Technology Symposium 2013

Sean Newland*, Virgil Fung, Ben Schreiber, Alberto Carrillo, Michael Johnson
BAE SYSTEMS Ordnance Systems Inc.
Holston Army Ammunition Plant
Kingsport TN, USA
Acknowledgements

<table>
<thead>
<tr>
<th>US ARMY RDECOM</th>
<th>US ARMY PEO-AMMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Army ManTech Funding</td>
<td>Project Manager Combat Ammunition Systems (PM-CAS)</td>
</tr>
<tr>
<td></td>
<td>Leila Zunino</td>
</tr>
<tr>
<td></td>
<td>• Stakeholder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>US ARMY RDECOM-ARDEC</th>
<th>BAE SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munitions Engineering & Technology Center (METC)</td>
<td>• Research & Development Analytical Labs</td>
</tr>
<tr>
<td>Paul Vinh, XueLing Zhao</td>
<td>• Production / Design Teams</td>
</tr>
<tr>
<td>• Engineering & Technical Lead</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- Objective
- Background
- Approach
- Process Flow Diagram
- Design of Experiments (DOE)
- Brookfield Viscometer
- Dewatering Techniques
- Schedule
- Major Accomplishments & Status
Objective

• To maximize the manufacturing efficiency of IMX-104 to lower its unit cost while maintaining the desirable properties.
IMX-104 Background

- An insensitive melt-pour explosive to replace Composition B for Mortar Applications
- IMX-104 and all starting ingredients manufactured at Holston Army Ammunition Plant
- Exhibited superior IM properties and comparable performance over Composition B in 81mm Mortar HE
- IMX-104 will minimize collateral damage when it is exposed to unplanned stimuli including fires, shock and impact
- IMX-104 qualified as an main fill explosive in June, 2011
- Type qualification on-going for 60 & 81mm Mortar HE (120mm to follow)
- Over 100,000 LB. manufactured at HSAAP
Approach

- Test Plan Development
- Laboratory Scale Evaluation
 - Effect of ingredient variation on processability
- Manufacture of Design of Experiment (DOE) Batches
- Pre-Melter Feasibility Study
- Manufacture of FAT Batches
- Conduct
 - First Article Tests
 - Loading Study
- Brookfield Viscosity Measurement Development
- Improve Raw Ingredients Dewatering Technique
Design of Experiments

<table>
<thead>
<tr>
<th>Variables</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1,325 lb batch</td>
</tr>
<tr>
<td></td>
<td>Ingredient addition temp @ 105°C</td>
</tr>
<tr>
<td></td>
<td>Final mixing time & temp 90 minutes @ 100°C</td>
</tr>
<tr>
<td>DNAN Pre-Melter</td>
<td>Various loading methods of DNAN</td>
</tr>
<tr>
<td></td>
<td>Various steam supply levels</td>
</tr>
<tr>
<td>Process Temperature</td>
<td>Elevated ingredient addition and processing temperature</td>
</tr>
<tr>
<td>Ingredients Addition Rate</td>
<td>Fastest possible addition rate without compromise on product temp in kettle</td>
</tr>
<tr>
<td>Final Mixing Time & Temperature</td>
<td>Reduced mixing time combined with higher mixing temperature</td>
</tr>
<tr>
<td>Batch Size</td>
<td>High and low (1,500 lb / 700 lb)</td>
</tr>
</tbody>
</table>
Pre-Melter

Melt Medium → Ingredients

Pre-Melter → Incorporation kettle → Hold-Up Kettle → Pellet Pot

Casting Belt (water cool) → Nutsche

Ingredients

Pre-Melter

Incorporation kettle

Hold-Up Kettle

Pellet Pot

Casting Belt (water cool)

Nutsche
Brookfield Viscometer

- Brookfield Viscometer is a rotational viscometer
- Torque required to turn an object in a fluid is a function of the viscosity of the fluid.
- Relatively reliable and repeatable
- Much more sensitive than Efflux viscosity measurement
- Less subjective, less operator dependent measurement
Dewatering Techniques

- Existing dewatering infrastructure
 - Labor intensive
 - Time consuming
 - Inconsistent moisture content
 - Extensive maintenance
- Bladder press
 - Commercially available
 - Rubber bladder expands with water pressure to press material against the basket to remove water
- Filter Press
 - Commercially available
 - Widely used liquid/solids separation equipment
Major Accomplishments / Status

• Completed Tasks
 • Laboratory scale evaluation of raw ingredients characteristics
 • Manufacture of DOE batches
 • Prove-out of pre-melter
 • Manufacture of FAT batches using optimized process parameters
 • Development of Brookfield viscosity test method

• Planned Activities
 • 81mm mortar loading study
 • Raw ingredients dewatering study