

Meltable Nitroguanidine: Development of DGX-Al Formulations

Kimberly Y. Spangler and Brian D. Roos

U.S. Army Research Laboratory Aberdeen Proving Grounds, MD 21005

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Approved for public release

REECON Ingredient Background

Nitroguanidine

- Advantageous properties for use as a powerful insensitive fill
 - Extremely insensitive to shock (SR)
 - Large critical diameter (SCJ)
 - Mild SCO response (liberates water, cools decomposition)
- NQ decomposes upon melting (T_{dec} = 250 °C)
- Requires PBX formulation
- Inert binders dilute explosive power

Price, D.; Clairmont, A. R., Jr.; Erkman, J. O. *The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results*; NOLTR 74-40; United States Naval Ordnance Laboratory: White Oak, MD, March 1974.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Approved for public release

<u>PrNQ</u>

- Simply adds propyl alkyl group to nitroguanidine
- Decreases NQ melting point to 98-100 °C
- Decomposition starts at 220 °C
- Allows for steam-based melt cast processing
- Propyl group expected to further desensitize NQ with a manageable performance diminishment

DGX-Al Formulations

- PrNQ will be combined with aluminum and other particulate solids to comprise DGX-AI family of formulations
- DGX-AI formulations will be highly insensitive, enhanced blast, and environmentally friendly
- Initial Goal: Determine detonation velocity and critical diameter of candidate DGX-AI formulations

Formulation Name	Ingredients	Detonation Velocity (% of PBXN-109)	Detonation Pressure (% of PBXN-109)
DGX-1	PrNQ ·AI	88.6	63.8
DGX-2	PrNQ-Ingredient A-AI	89.3	65.4
DGX-3	PrNQ-Ingredient B-Al	98.6	87.8
DGX-4	PrNQ-Ingredient A-Ingredient B-AI	99.1	89.2
DGX-5	PrNQ-Ingredient B-Ingredient C-AI	97.4	101.5
DGX-6	PrNQ. Ingredient B.Ingredient C.Al (more Ingredient C)	95.8	98.3

Ingredients B and C are solid particulates Ingredient C is a sensitizer

Cheetah 6.0 User's Manual, LLNL-SM-416166, 2010.

Formulation Name	Ingredients	Detonation Velocity (% of PBXN-109)	Detonation Pressure (% of PBXN-109)
DGX-1	PrNQ ·AI	88.6	63.8
DGX-2	PrNQ-Ingredient A-AI	89.3	65.4
DGX-3	PrNQ-Ingredient B-Al	98.6	87.8
DGX-4	PrNQ-Ingredient A-Ingredient B-AI	99.1	89.2
DGX-5	PrNQ-Ingredient B-Ingredient C-Al	97.4	Generation
DGX-6	PrNQ- Ingredient B-Ingredient C-Al (more Ingredient C)	95.8	98.3

Cheetah 6.0 User's Manual, LLNL-SM-416166, 2010.

Formulation Name	Ingredients	Detonation Velocity (% of PBXN-109)	Detonation Pressure (% of PBXN-109)
DGX-1	PrNQ-AI	88.6	63.8
DGX-2	PrNQ.Ingredient A.AI	89.3	65.4
DGX-3	PrNQ-Ingredient B-AI	98.6	87.8
DGX-4	PrNQ.Ingredient A.Ingredient B.AI	99.1	89.2
DGX-5	PrNQ.Ingredient B.Ingredient C.Al	97.4	101.5
DGX-6	PrNQ. Ingredient B.Ingredient C.Al (more Ingredient C)	95.8	98.3
			Conoration

Generation 2

Cheetah 6.0 User's Manual, LLNL-SM-416166, 2010.

FREECON Melt-Cast Scaling Process Map

Formulation	Ingredients	Aluminum
DGX-3a	PrNQ-Ingredient B-AI	Type III Class 7
DGX-3b	PrNQ-Ingredient B-AI	Type IV spherical
DGX-4a	PrNQ.Ingredient A.Ingredient B.AI	Type III Class 7
DGX-4b	PrNQ-Ingredient A-Ingredient B-AI	Type IV spherical

Cheetah 6.0 User's Manual, LLNL-SM-416166, 2010.

DGX-3 Formulation Processing

DGX-3a (PrNQ, Ingredient B, Type III Class 7 AI)

Processed poorly- mix did not pour

DGX-3b (PrNQ, Ingredient B, Type IV spherical AI)

Processed well- mix poured easily

DGX-3 Formulation Processing

DGX-3a (PrNQ, Ingredient B, Type III Class 7 AI)

Processed poorly- mix did not pour

DGX-3b (PrNQ, Ingredient B, Type IV spherical AI)

Processed well- mix poured easily

DGX-4a (PrNQ, Ingredient A, Ingredient B, Type III Class 7 AI)

Processed marginally- mix poured with difficulty DGX-4b (PrNQ, Ingredient A, Ingredient B, Type IV spherical AI)

Processed well- mix poured easily

BECOM DGX-4 Formulation Processing

DGX-4a (PrNQ, Ingredient A, Ingredient B, Type III Class 7 AI)

Processed marginally- mix poured with difficulty DGX-4b (PrNQ, Ingredient A, Ingredient B, Type IV spherical AI)

Processed well- mix poured easily

RDECOM Aluminum SEM Images

Type III Class 7 Aluminum

TM-1000_0002

2012/02/16 14:09

100 um

TM-1000_0007

2012/02/16 14:25

100 um

- > Type III Class 7 aluminum particles larger and more irregularly shaped
- > Type IV spherical aluminum smaller, but spherical
- Surface area differences likely affected processing success of formulations with solid particulates

Material	Impact (H ₅₀ , in)	BAM Friction (N)	ESD (J)
DGX-3b	> Instrument Max	247	0.625
DGX-4b	> Instrument Max	318	0.250
RDX	8.6	125	0.063

The insensitivity shown by the small-scale sensitivity testing coupled with favorable thermal safety testing permitted scaleup to 1-gallon mixes

Generation 1 Detonation Velocity Testing

DGX-3b x-ray image

DGX-4b x-ray image

2.5" diameter x 10" long charges cast at high theoretical maximum density

Test set-up

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Approved for public release

Generation 1 Detonation Velocity Testing Results

- No detonation observed for either DGX-3b or DGX-4b
- > Material recovered after both tests
- Conclusion- critical diameter >2.5" for both

Generation 1 Decaying Shock Waves

- DGX-3b (blue), DGX-4b (red)
- Maximum shock velocity observed <5 km/s</p>
- Roughly half of pins on each charge did not receive signal for passing shock wave

Detonation Velocity Cone Tests

- Why a cone test?
 - Eliminates need to test multiple right-cylinder charges to determine critical diameter
 - Minimizes material needs (but still a big charge)
- Drawback- provides only an estimate of critical diameter due to overdriven detonation wave
- > Cone description:
 - 5.25" diameter by 5.25" long lead-in section
 - 18" long taper section (3.6°) down to 3" diameter
 - 5.25" diameter by 5.25" long composition B booster

DGX-3b

- PrNQ, Ingredient B, and Type IV spherical aluminum
- Did not detonate at 2.5" diameter
- Contains fewer ingredients than DGX-4b
- Approved for processing on the 1-gallon scale
- DGX-6b
 - DGX-3b + a sensitizing ingredient (Ingredient C)
 - Should detonate at a smaller diameter than DGX-3b (good if critical diameter of DGX-3b is excessively large)
 - Approved for processing on the laboratory scale

- > DGX-3b
 - Only remaining data piece was 1-liter slow cook-off
 - > 1-liter slow cook-off results were favorable
 - Approval was granted to process on the 10-gallon scale

DGX-6b

Needed small-scale sensitivity and thermal analysis

Material	Impact (H ₅₀ , in)	BAM Friction (N)	ESD (J)
DGX-6b	> Instrument Max	282.24	0.250
RDX	10.12	141.12	0.125

- Also needed 1-liter slow cook-off data
- > 1-liter slow cook-off results were favorable
- Approval was granted to process on the 10-gallon scale

TREECON 10-Gallon Scale Processing

Insulated 3 piece cone mold

TREECON 10-Gallon Scale Processing (cont.)

Charge after removal from mold

No voids observed in the experimental section of charge

Detonation Velocity Monitoring

Chirped fiber Bragg grating

Collaboration with LANL, funded by JMP (POC: George Rodriguez)

Hi fidelity record of passing detonation wave

Piezopins

1" pin spacing

Traditional detonation velocity measurement technique

Detonation Velocity Cone Test Results

> DGX-3b

- PrNQ, Ingredient B, and Type
 IV spherical aluminum
- Did not detonate
- > Material recovered after test
- Critical diameter >5.25"

DGX-6b

- Fully detonated at all diameters
- Large dent in witness plate
- Detonation velocity near tritonal and PBXN-109
- Critical diameter <5.25"</p>

Recovered DGX-3b

DGX-6b witness plate

- Demonstrated that PrNQ can be used a melt-base for energetic formulations
- Conical detonation velocity tests were conducted on DGX-3b and DGX-6b
- DGX-3b critical diameter > 5.25"
- DGX-6b critical diameter < 3", detonation velocity near tritonal and PBXN-109
- Future work will be to tailor formulations to achieve desired detonation velocity, critical diameter, detonation pressure, and shock sensitivity

- > OSD JIMTP for funding (Task 12-2-48)
- The JIMTP bomb working group
- > ARL's entire Energetics Technology Branch
- George Rodriguez (LANL)
- Steve Gilbertson (LANL)
- Tom Mason (JMP) for funding the chirped fiber Bragg grating work

Questions?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Approved for public release