

ENHANCED PERFORMANCE FROM INSENSITIVE EXPLOSIVES

Ronald Brown, John Gamble, Dave Amondson, Ronald Williams, Paul Murch, and Joshua Lusk

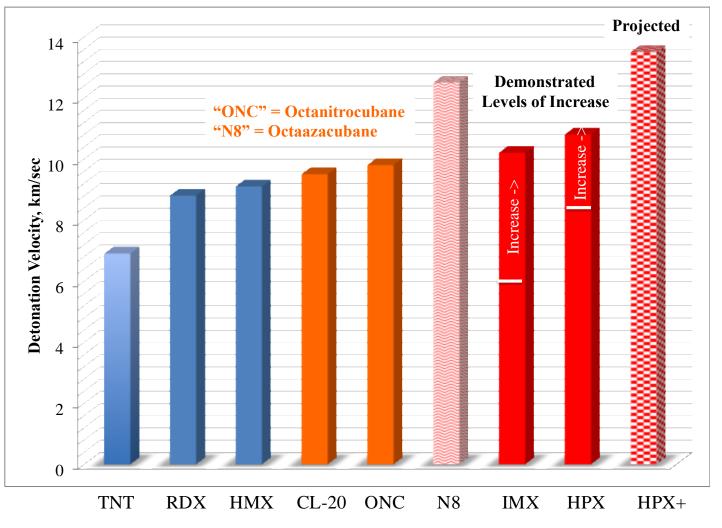
> Physics Department Naval Postgraduate School, Monterey, CA 93943

Contact: rebrown@nps.edu

Acknowledgement

Dr. Kevin Vandersall Lawrence Livermore National Laboratory

Technical Staff ANSYS-AUTODYN Berkeley, CA

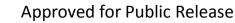


Overview of Achievements Relative to

Explosives Chronology

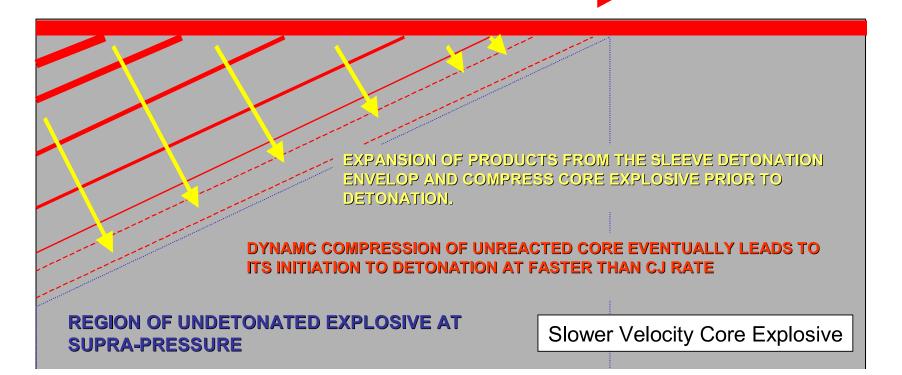
OUTLINE

- Objective
- Background
- Modeling & Validations
- Effect of Detonation Convergence on Energy Partitioning
- Coaxial Initiation Limitations
- Results of Novel Dynamic Compression
- Conclusions



Develop means for enhancing directed energy from explosive weapon systems by exploiting the effects of overdriven detonation. Explore means for overcoming the limitations of coaxial charges. Validate prediction techniques.

GOAL & OBJECTIVES



Pre-Compression Leads to Elevated Shocked States

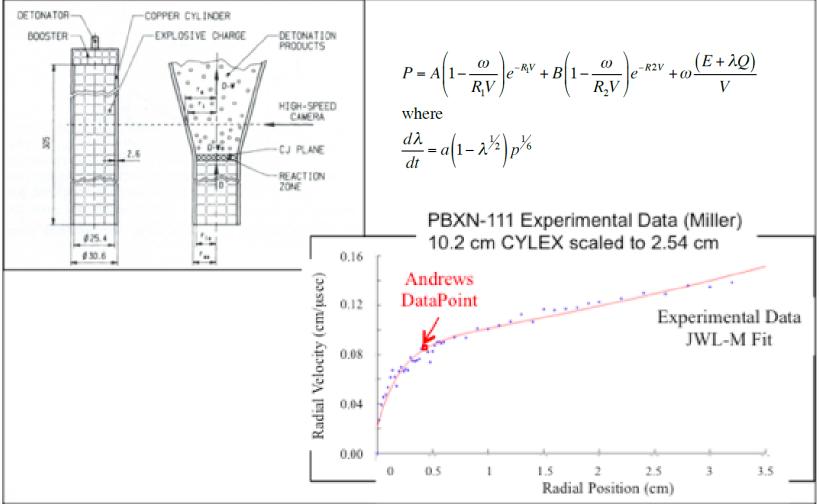
&

Detonation Condition

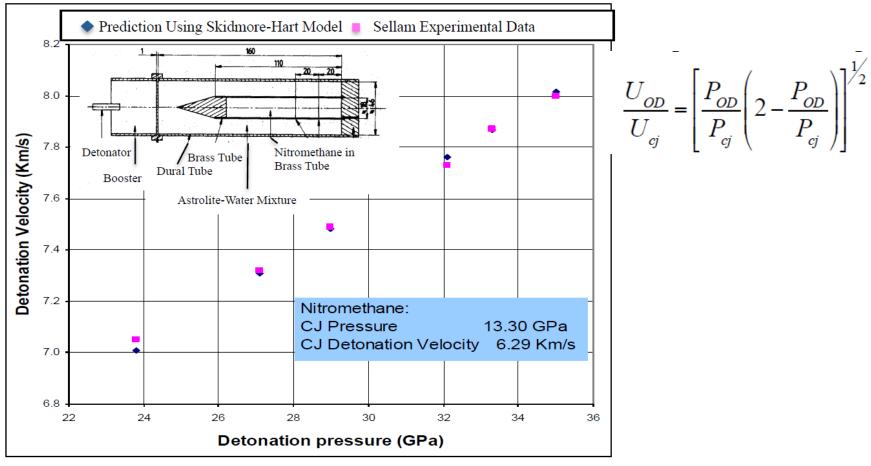
Circumferential Initiation at Rate(s) Faster Than the Core Explosive

Equation of State & Modification Agreements with

- PBXN-111 PBXN-110/PBXN-111 CYLEX
- PBXN-111 Detonation
- PBHMX spherical implosion


VALIDATION OF PREDICTION TECHNIQUES & TECHNOLOGY BACKGROUND

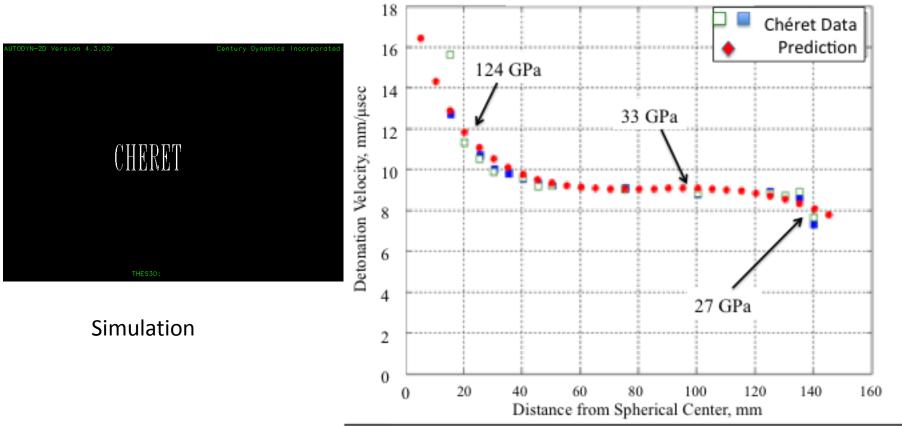
JWL and JWL-M Equations of State & Concurrence with PBXN-111 CYLEX



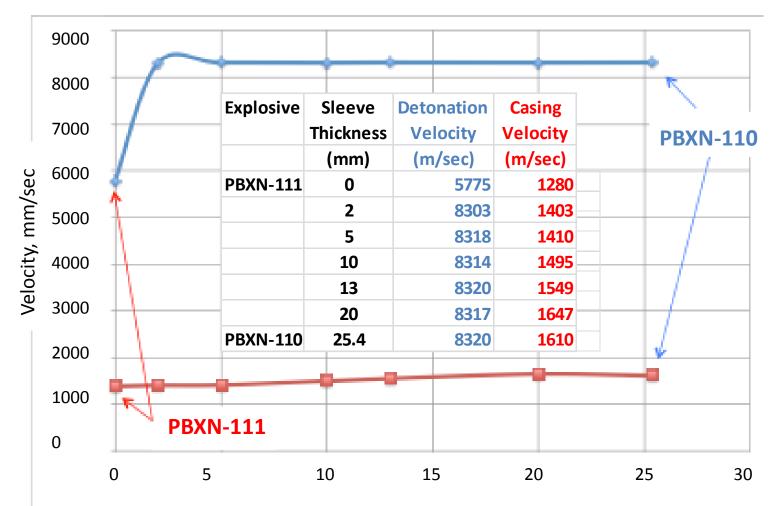
CLASSIC CO-AXIAL EXPERIMENT & AGREEMENT WITH SKIDMORE-HART MODEL

SUSTAINED EFFECT OF CIRCUMFERENTIAL INITIATION ON PBXN-111

(INITIATION BY THIN SLEEVE OF PBXN110 AND PBXN-112)


Position	PBXN-	111	PBXN-	110/111	PBXN-	112/111
(mm)	Predict	Exp't	Predict	Exp't	Predict	Exp't
63.5	7.0	6.3	8.3	8.1	8.4	8.3
44.5	6.5	6.0	8.3	8.2	8.5	9.2
Centerline	5.8	5.5	9.7	10.4	9.9	10.2
Average	6.2	5.8	9.1	9.4	9.3	9.5
Shock attenuator Initíator			N-110 eeve	*Peak Ma	c <mark>h Stem Pre</mark>	ssure, 66 0

HYDRO-CODE PREDICTION COMPARISON WITH REPORTED EXPERIMENTAL DATA: SPHERICAL IMPLOSION



Effect of Sleeve Thickness

PBXN-110 Sleeve Thickness, mm

Relative Energies

60000 6 **Casing Velocity Crater Volume** 50000 5 **Relative Crater Volume** 40000 4 PBXN-110 30000 3 20000 2 **PBXN-111** 10000 1 0 0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 **Explosive Energy (mjoules)**

2013 Insensitive Munitions and Energetic Materials Technology Symposium Paper 16169

Relative Casing Velocity

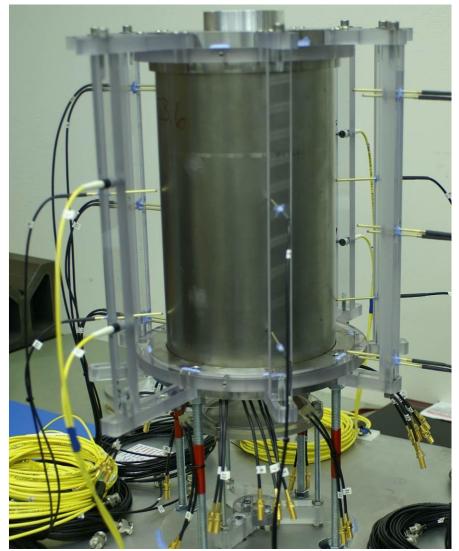
Dynamic Compression Technique Results from Circumferential Initiation at ~11 km/sec with core explosives:

- High performance HMX-based explosive ("HPX)
- Extremely insensitive rubber-based explosive ("IMX")

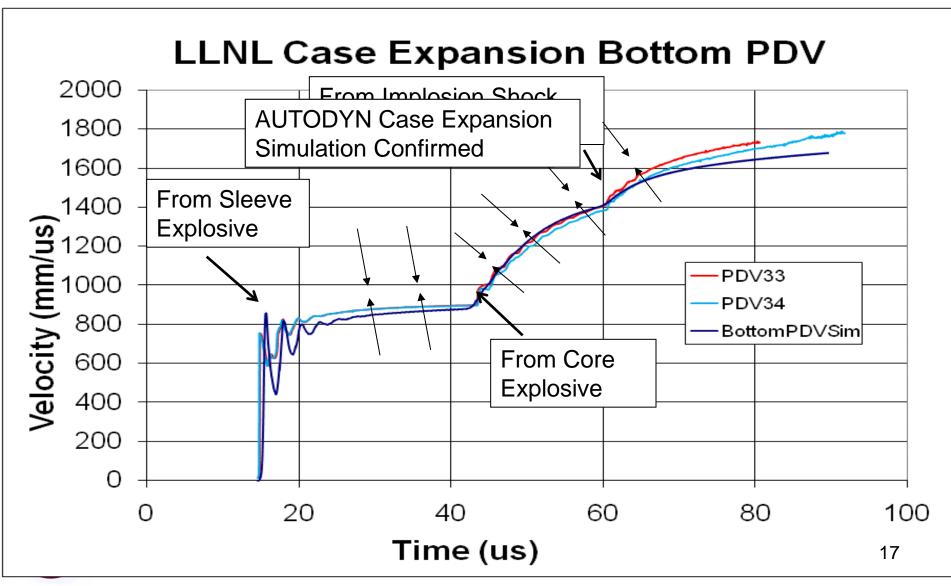
Diagnostics for Measuring

- Convergent front shape
- Detonation velocity
- Cylinder expansion

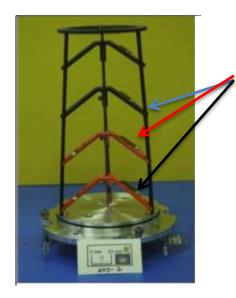
EXPERIMENTS CONDUCTED WITH INITIATING DEVICE THAT OVERCOMES THE COAXIAL CHARGE LIMITATION


CYLINDER EXPANSION

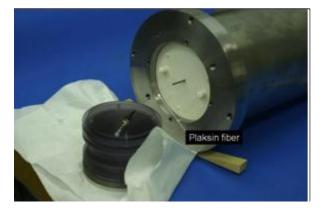
Charge Setup and Exterior Instrumentation



Case Expansion: Simulation vs Experimental


CONVERGENT FRONT GEOMETRY & DETONATION VELOCITY

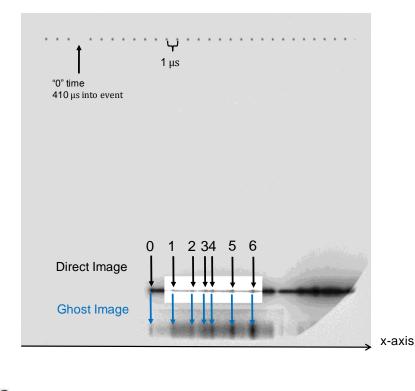
CONFIRMATION OF PREDICTED FRONT GEOMETRY

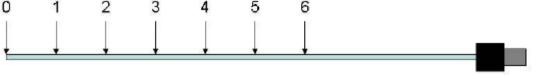

Embedded Structure With Piezoelectric Sensors

Front Geometry Confirmation

	Dataset 1			Dataset 2		
Height (mm)	Distance from Center (mm)	Time of arrival (μs)	Height (mm)	Distance from Center (mm)	Time of arrival (µs)	
177.8	20.5	36.4	178.3	20.7	36.9	
127.8	21.0	42.2	129.6	20.2	42.5	Position 1
118.5	40.0	42.3	119.2	40.0	42.4	
79.3	21.5	46.7	80.5	20.2	47.2	~
74.9	31.0	46.9	75.8	29.8	47.1	Position 2
69.4	41.0	46.9	70.2	39.5	47.0	~
30.8	21.0	51.2	30.7	20.4	51.9	Position 3
25.6	31.5	51.5	25.6	31.0	51.7	
20.1	41.5	51.4	20.7	39.8	51.7	\leftarrow

Average detonation velocity (3 experiments and 5 measurement, 10.8 ± 0.1 km/sec





CONTRACTOR NOR

Diagnostics

Holes 1 through 6 are 0.008 inch diameter holes drilled to depth halfway into core Hole Spacing: 0.787 inches between consecutive locations on center Hole 0 begining of the probe: flat polish matte finish, blackend with a sharpie

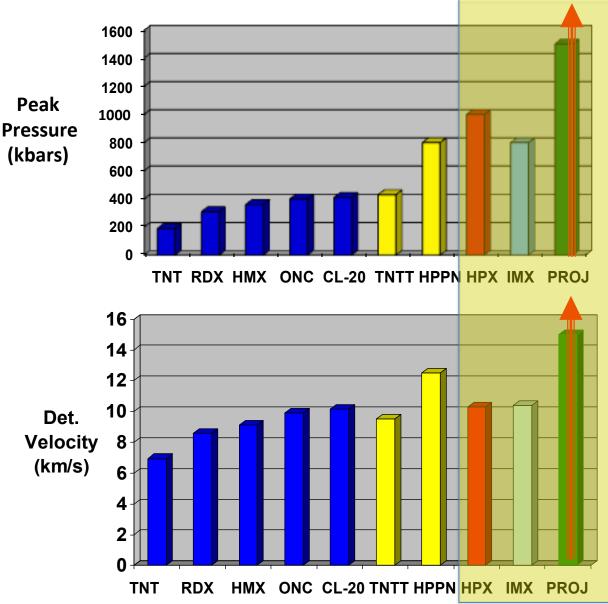
Approved for Public Release RESULTS OF IMX EXPERIMENTS

Shot Number	Center Fiber Detonation Velocity (km/s)	1.905 cm Fiber Detonation Velocity (km/ s)	3.810 cm Fiber Detonation Velocity (km/s)	Average Detonation Velocity (km/s)	EXPERIMENT WITH 6.5 in CHARGE Detonation Velocity Increase from 6.2 to 10.2 km/sec
1	10.3	10.0	10.1	10.1	Detonation Front Angle 52 Degrees
2	10.3	10.1	10.6	10.3	
AUTODYN	10.9	10.2	10.1	10.3	

Shot Number	Center Fiber Detonation Velocity (km/s)	1.905 cm Fiber Detonation Velocity (km/ s)	3.810 cm Fiber Detonation Velocity (km/s)	Average Detonation Velocity (km/s)
1	10.7	9.5	9.7	10.0
2	10.5	No data	10.0	10.2
AUTODYN	10.9	10.1	10.2	10.4

EXPERIMENT WITH 7.0 in CHARGE Detonation Velocity Increase from 6.2 to 10. km2/sec Detonation Front Angle 56 Degrees

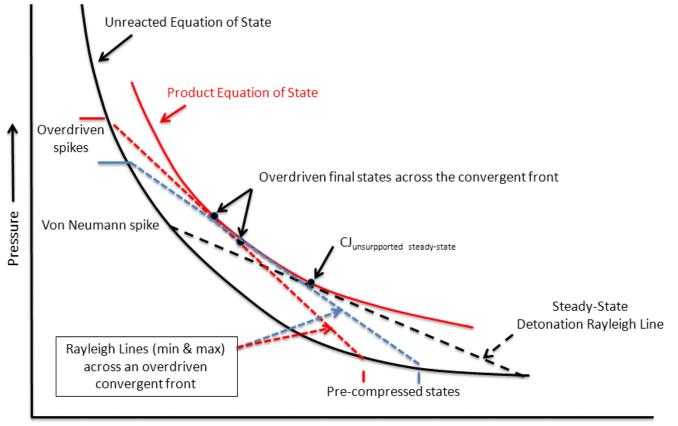
Pressure gauges saturated



Overview of Achievements Relative to

Explosives Chronology

Also PBXN-111 U_D , 5.5 to 8.9 P_{peak} , 12 to 66 GPa



New Model for Sustained Overdriven Detonation

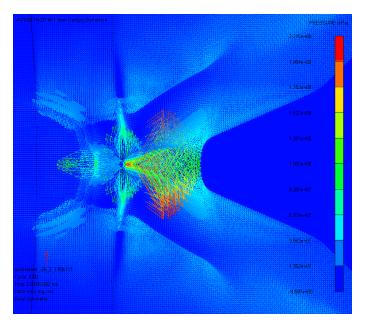
EFFECT OF SUSTAINED SUPRA-PRESSURE INITIATION ON DETONATION CHARACTERISTICS

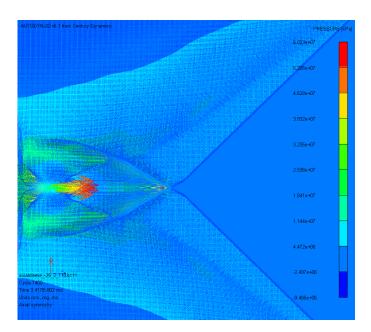
Specific Volume -

V_o

CONCLUSIONS

- Substantial increases in velocity and peak pressure in the detonation of existing explosives by dynamic compression effects from circumferential initiation.
 - Aluminized explosives (PBXN-111)
 - High performance HMX-based explosive ("HPX")
 - Extremely insensitive explosive ("IMX")
- Gains exceed those of on-going and projected chemistry (conventional initiation) and further gains are possible.
- Technology can easily be incorporated into weapon systems.
- Prediction techniques validated across a wide range of applicable conditions.


Immediate Recommendations


- Supra-pressure shock response characterizations of candidate explosives over much greater ranges in order to reach 3+ megabar.
- Techniques for detecting pressures in the megabar range required for continued prediction confidence and to explore effects of the pressure continuum across convergent fronts.
- Additional exploration and extension of detonation theory.
- Exploratory development for enhancing directed energy warheads.

Pressure and vector contours about a convergent mach stem

QUESTIONS

