nexter

Melt-cast process applied to develop based IM ammunition

NEXTER Munitions Etablissement de La Chapelle Route de Villeneuve BP 13 18570 La Chapelle Saint Ursin c.coulouarn@nexter-group.fr

October 7th, 2013, San Diego Christophe Coulouarn, R. Aumasson, P. Lamy-Bracq, S. Bulot, G. Deschatre

Nexter Munitions

Melt-cast Main detonics process properties

Recent IM Results New challenges

Conclusion

Melt-cast process

- Major detonics performances of XF[®]11585
- Recent IM results on ammunition loaded with XF[®]11585
- New challenges for Energetics Materials
- Conclusion

Melt-cast Main detonics process properties

Recent IM Results New challenges

Conclusion

3

Objectives of the R&D studies

Leadership for « IM » munitions and low sensitivity Energetic Materials

Melt-cast Main detonics properties process

Recent IM Results

challenges

New

Conclusion

4

Melt-cast process

Mixing phase

Cooling phase

Gravitational casting phase

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Recent IM Results

New challenges

Conclusion

5

Major detonics performances of XF®11585

Detonics performances \sum

Melt-cast

process

		Unconfined diame	l critical ter	Unc	VoD confined ∅ 30 mm	VoD Unconfined $arnothined$ 5	0 mm	VoD Confined $\mathcal Q$) 0 73 mm
	XF [®] 11585	~10 mm		7070 m/s @ 1,73 g/cm ³		7300 m/s @ 1,73	3 g/cm ³	7468 m/s @ 1	1, 73 g/cm ³
	Comp B	< 4 m	m	7920	m/s @ 1,72 g.cm ⁻³			7929	1,71 g/cm ³
Mechanical properties							ar to		
		Density	Stress, (MPa	max a)	Young Modulus (MPa)	Deformation max (%)	Stur	nP	
	XF [®] 11585	1,73 g/cm ³	20,8		1986	1,18		< 0,8	
	Comp B	1,73 g/cm ³	16,	1	1877	0,94		ND	
Gap test STANAG 4488								EN.	e5
		Density	PMMA	E	equivalent pressure	- State State	Sensit	vity	
	XF [®] 11585	1,73 g/cm ³	70 mm		~50 kbar	ala	Comp B	Y	
	Comp B	1,69 g/cm ³	130 mm		19,2 kbar	With			

Gap test STANAG 4488 \geq

	Density	PMMA	Equivalent pressure
XF [®] 11585	1,73 g/cm ³	70 mm	~50 kbar
Comp B	1,69 g/cm ³	130 mm	19,2 kbar

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Recent IM Results New challenges

Conclusion

IM performances already recorded

Ammunition filled with XF[®]11585

STANAG 4439	STANAG	GEMO- Mock up	120 mm Tank ammunition	100 mm Navy Ammunition
Fast heating	4240	IV	V	
Slow heating	4382	V		
Bullet impact	4241	VI	VI	
Sympathetic reaction	4396		IV	VI
Fragment impact	4496	V		
Shaped charge impact	4526			

Screwed cover

Shell body 1 cm thickness

Bottom

French Standard NF T 70-500

GEMO Mock up represents an artillery shell

Melt-cast Main detonics process properties

Recent IM Results

New challenges

Type III

Conclusion

Acceptor

Recent results in ammunition

- 2 155 mm Artillery shell: LU107 modernized version of M107
 - Sympathetic reaction: STANAG 4396

Distance between donor and acceptor 12 cm

Recent IM Results

New challenges

Conclusion

8

Recent results in ammunition

120 mm Tank ammunition

Sympathetic reaction: logistic packaging (live HE shell only without "empennage")

Shaped charge Jet Impact with CCEB62 (Caliber 62 mm / HMX based) Compliant with STANAG 4526

Recent IM Results

New challenges

Conclusion

Recent results in ammunition

- 76 mm Navy ammunition
 - Bullet Impact according to the STANAG 4241

1st: in fuze 2nd: in main charge

Sympathetic reaction according to the STANAG 4396 (turret configuration)

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Melt-cast Main detonics process properties

Recent IM Results

New challenges

Conclusion

Recent results in ammunition

- 76 mm Navy ammunition
 - Thermal Threat: Slow heating according to STANAG 4382

Works in cooperation with

Thermal Threat: Fast heating according to STANAG 4240 (reviewed in progress)

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Recent IM Results

New challenges

Conclusion

11

IM performances

Overview on ammunition filled with XF®11585 \sum

STANAG 4439	Result ex	pected	155 mm LU107	120 mm Tank ammunition	100 mm Navy Ammunition	76 mm Navy Ammunition
Fast heating	4240	V	V	V		V *
Slow heating	4382	V	V**			V
Bullet impact	4241	V	VI**	VI		VI
Sympathetic reaction	4396	Ш	III	IV	VI	VI
Fragment impact	4496	V	V**			
Shaped charge impact	4526	Ш	 **			
*: ramp gas **: Gemo-mock up					STANA comp	G 4439 liant

Melt-cast Main detonics process properties

Recent IM Results New challeng

Conclusion

Energetic materials available for Insensitive Munitions

Energetic materials described in open literature for "IM" for the 60 mm up to 120 mm

	Technology process	Key ingredient	Applications
XF [®] 11585	TNT melt cast	TNT + RDX + NTO + AI	60 mm up to 120 mm
IMX-104 (OSX-7)	DNAN melt cast	DNAN + NTO + RDX	60 mm up to 120 mm
CLX-663	Composite		120 mm
HBU-88A	Composite	HTPB + RDX	76 mm
OSX-12	DNAN melt cast	DNAN + NTO + HMX	
PAX-21	DNAN melt cast	DNAN + RDX + AP + MNA	120 mm
PAX-48 (OSX-8)	DNAN melt cast	DNAN + NTO + RDX + AL	120 mm
PAX-195	Wax melt cast	RDX + Wax	60 and 81 mm
PAX-41	DNAN melt cast	DNAN + RDX + MNA	

XF11585 is a solution for this range of ammunition

Main detonics Melt-cast properties

process

Recent IM Results

New

Conclusion

Energetic materials available for Insensitive Munitions

Energetic materials described in open literature for "IM" for the 60 mm up to \geq 120 mm

	Technology process
XF [®] 11585	TNT melt cast
IMX-104 (OSX-7)	DNAN melt cast
CLX-663	Composite
HBU-88A	Composite
OSX-12	DNAN melt cast
PAX-21	DNAN melt cast
PAX-48 (OSX-8)	DNAN melt cast
PAX-195	Wax melt cast
PAX-41	DNAN melt cast

\geq The challenge is now to propose the best trade-off according the secondary criteria

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Recent IM Results

New challeng

Conclusion

Energetic materials available for Insensitive Ammuntion

- Basic hypothesis: Explosive composition must be efficient in terms of
 - Detonics performances
 - Insensitivity

→ Essential but **not discriminant** between solutions

- What do we need to provide the best trade-off "IM" ammunition for the 60mm up to 120 mm?
 - Low investment in terms of filling equipment
 - Compliant with a simple method of demilitarisation
 - Ageing compliance
 - Best cost efficiency

Melt-cast Main detonics process properties

Recent IM Results

New challeng

Conclusion

15

New challenges: low investment in terms of filling equipment

Melt-cast process : simple, no-specific equipment and worldwide widespread

Main detonics Melt-cast properties

Recent IM Results

New

Conclusion

New challenges: Demilitarization

Simple method... \geq

1st: Re-melt phase

01-LUL-0 XE 22 FO 511

process

No additional booster:

Easy to dismantle

XF®PREMIX

3rd: Re-use phase

Re-use of ammunition shell

Recycling Steel

Reuse of explosive composition

Recent IM Results New

Conclusion

New challenges: performances after ageing

TNT binder:

Melt-cast

process

Scope of the

study

- Worldwide used by the military forces for more than 50 years in TNT shells or NTO/TNT warheads: excellent background!
- Exsudation:
 - Problem solved by Nexter Munitions many years ago by using XF[®] Family

Main detonics

properties

XF®11585:

- French ministry of Defense is going to evaluate XF11585 by applying complete set of tests according to the STANAG 4170
- Results are expected for mid Y2014

Scope of the Melt-cast study process

Recent IM Results

New challenges

Conclusion

New challenges: Better cost efficiency

Economic performances

Of course, the last key of choice for the non-technical people

- 3 main axes to obtain the best economics performances
 - (1/3) Simple industrial plant
 - XF®11585 allows us to use standard filling plant for TNT or Comp B
 - (2/3) Use of cheap raw materials
 - TNT as powerful energetic binder : still the best choice in terms of economic performances in comparison with DNAN or plastic binder

XF[®]11585 formulation

• TNT is 6900 m/s @ for less than 3,5€/kg

Melt-cast Main detonics process properties

Recent IM Results

New challenges

Conclusion

New challenges: Better cost efficiency

Economic performances: \geq

(3/3) Simple pyrotechnic train

100 mm

Size or / and performances of additional Booster

Sensitivity of main charge

~76 mm config.

120 mm

155 mm

C. Coulouarn, and al., NEXTER Munitions, c.coulouarn@nexter-group.fr

Scope of the

Melt-cast Main detonics process properties

Recent IM Results New challenges

Conclusion

21

