

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

IM State of the Art

2013 INSENSITIVE MUNITIONS & ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM

8 Oct, 2013 **CORONADO BAY, SAN DIEGO, CA**

Manfred "Fred" Becker Warhead Technology TSO Tel ++32 2 707 5426 M.Becker@msiac.nato.int

Supporting Munitions Safety

INTRODUCTION

- ➤ Presentation will describe IM State of the Art and trends with respect to IM Technology
 - Available to members http://www.msiac.nato.int/
- Changing Nature of Technology, Munitions and Threats

IM SOTA Technology

IM International Success Stories

- Many examples of IM compliant / near compliant systems
 <u>Misconception IM means reduced performance</u>
 - IM definition; Munitions which reliably fulfill their performance, readiness and operational requirements on demand
 - There are examples of IM rounds with increased performance against the target set
 - And, there are examples where a reduced performance requirement was deemed acceptable to achieve increased IMness
 - Munitions can significantly impact the survivability of platforms in operational scenarios

MSIAC IM SOTA project captures information on latest munition developments

HIGH

Technical Risk

High Performance Rocket Propellant

Min Smoke Rocket Propellant

Large Calibre
Gun Propellant

Gun Launched Formulations

- Melt Cast HE
- Pressed HE
- Cast Cure HE

Typical AP/HTPB Pressed HE
Composite Propellant

Underwater Explosives

Metal Accelerating HE Cast Cure Formulations

General Purpose HE Cast Cure & Melt Cast Formulations

Small Calibre Gun Propellant

LOW

IM Performance

Gun Launch Trends

	_						
	FCO	sco	BI	FI	SR	SCJ	60mm MAPAM
PBXN-110	V	V	V *	V *	IV*		O O I I I I I I I I I I I I I I I I I I
	FCO	sco	ВІ	FI	SR	SCJ	
M934A2	IV**	IV**	IV**	IV**	IV***	IV	120mm HE Mortar
	FCO	SCO	BI	Fl	SR	SCJ	
M0125	IV	IV	V	V	IV	IV	M0125
	FCO	SCO	BI	FI	SR	SCJ	
DUO						*	RH30 M795
RH30	IV/V	IV/V	IV/V				155mm 155mm
	FCO	sco	BI	FI	SR	SCJ	
M795	V	V	IV*	V	Pass	IV	
	FCO	SCO	ВІ	FI	SR	SCJ	LU 211 155mm
LU211-IM	V	V	NR	NR	IV	IV	LU _{211-M} (3) 155 HE
	FCO	sco	BI	FI	SR	SCJ	Anti-Jam GPS/IMU Navigation
XM-982	V	III	V	V	III		Base Bleed Inductive Fuze Interface
, OOL						-	Rotating Multi-Function Unitary Guidance Base/Fin Slip Obturator Warhead Design Guidance

Excalibur 155mm

Changing Nature of Munitions

IM reality

Munition	Munition Donor (D) and Acceptor (A) Charge Features						Mitigation			Test Set up			Results		
Retur Front Name	Page Energetic Material	Composition	External Diameter (mm)	Case Thickness (mm)	Case Material	Mitigation Material	Mitigation	p (g/cm³)	Distance Donor Skin to Acceptor Skin	Distance Skin of Donor to Mitigation	Distance Skin of Acceptor to Mitigation	Initiation Mechanism	Reaction Type	Configuration]_
155 mm Shell	TNT (D) RDX/TNT (A)	(D) 100TNT (A) 50TNT 50RDX	155		Steel	Poly- ethylene	40		40			SDT	IV	One on One Buffered	32
155 mm Shell	TNT (D) TNH (A)	(D) 100TNT (A) TNT HNS	155		Steel	Poly- ethylene	40		40	0	0	SDT	IV.	One on One Buffered	32
155 mm Shell	TNT (D) TT (A)	(D) 100TNT (A) 40TNT 60NTO	155		Steel	Poly- ethylene	40		40	0	0	SDT	NR	One on One Buffered	32
155 mm LU- 211M	XF-13333	48NTO 31TNT 14A1 7Wax	155	16.4 15 8	Steel	-	-		35 35 114			SDT SDT DSDT	ľV	One on Many Unbuffered	15
155 mm M107	PAX-196	RDX Wax	155	20 to 23	Steel	Possibly HDPE						SDT	100	One on Many Buffered	81
155 mm M107	PBXW-108 mod	82RDX 18Wax binder	155	20 to 23	Steel	HDPE	9.53	0.95				SDT DSDT	100	One on Many Buffered	84
155 mm M795 Shell	IMX-101	DNAN NTO Other	155		Steel				29 29 105			DSDT	ND	One on Many Unbuffered	80
155 mm M795 Shell	IMX-102	TNT NTO Chlorisated Wax	155		Steel	-	-	-	29 29 105			DSDT	ND	One on Many Unbuffered	80
155 mm M795 Shell	IMX-103	NQ RDX DETN EDD MeNO HBNO	155		Steel	-			29 29 105			DSDT	ND	One on Many Unbuffered	80
155 mm M795 Shell	PAX-196	RDX Wax	155		Steel	Possibly HDPE			29 29 105	0	0	SDT DSDT	•	One on Many Buffered	81
155 mm XM0121A18 Shell (Assegui)	SPX-1 (Filling) DPX-2 (Sup. charge)	SPX-1 (Pres.) RDX Binder DPX-2 92HMX 2Hytemp 6DOA	155		Steel	Polyethy- lene	#12.7 tube around each shell	0.95	29 29 105	0	0	SDT DSDT		One on Many Buffered	82
155 nun XM982 Shell (Excalibur)	PBXN-9	92HMX 2Hytemp 6DOA	155		Steel	Packaging						SDT DSDT	ND	One on Many Buffered	85

Search Results for 155 mm Shells that Pass Sympathetic Reaction Test (MSIAC Tool SYR v1.2)

Gun Launch Trends

HIGH

Technical Risk

LOW

IM Performance

Underwater Explosives

TP-2000

 FCO
 SCO
 BI
 FI
 SR

 V
 V
 IV
 IV
 >III*

FOXIT

FCO SCO BI FI SR

V V III*

Mk 46 ¹

FCO	sco	ВІ	FI	SR
V	IV	IV	F	> *

DM2A4 SeaHake
PBXN-111
Warhead
DM29

Booster

FCO	SCO	BI	FI	SCJ	SR
IV	IV	IV	IV	Ш	1
V	V	V	V	I	NR

Underwater Explosives

HIGH

Technical Risk

High Performance Rocket Propellant

> Min Smoke Rocket Propellant

> > Large Calibre Gun Propellant

Typical AP/HTPB
Composite Propellant

Metal Accelerating
Pressed HE

HE

Cast HE

Underwater Explosives

Metal Accelerating HE Cast Cure Formulations

General Purpose HE Cast Cure & Melt Cast Formulations

Small Calibre Gun Propellant

Gun Launched Pressed

Gun Launched Melt

Gun Launched Cast Cure Formulations

LOW

IM Performance

MSIAC

IM SOTA Trends

HIGH

Technical Risk

LOW

IM Performance

HIGH

General Purpose Bombs

CBEMS/BANG 250 kg

PGB FCO SCO BI FI SR V V V* V I*

Precision Guided Bomb Paveway IV

General Purpose Bombs

CBEMS/BANG 250 kg

PGB

Precision Guided Bomb Paveway IV

IM Maturity and IM Performance Assessment

- ☐ IM rounds are in Service (PGB dropped in Libya)
- ☐ Systems close to IM compliant
- ☐ Sympathetic reaction difficult to pass for large diameter warheads

HIGH

Technical Risk

LOW

IM Performance

Changing Nature of Munitions (theirs...)

MSIAC GAPS workshop (The Hague, The Netherlands June 2011)

IED threats

Shaped Charge Jet threats – unlike a 50mm Rockeye

Nations identified need for standard SCJ threat for test and analysis

I-AMMO Working group addressing Marking of Munitions

IM rounds more resilient to destruction

EOD desire for stamp / Stencil Explosive fill

NATO AOP-2(c) will be amended

Changing Nature of Munitions (ours...)

It's cheap, **it's safe**, it's the future . . . and the future is here.

"Ours" and "Theirs"

Pictures from recent MSIAC newsletters & workshops

Technology Gaps

- Designing gun propellants for IM not funded in most countries
 - Gun propellant response to FI and SCJ generally resulting in a pass with most recent gun propellants
 - System design critical
- Rocket Propellant
 - High energy min signature rocket motor
 - Low temp capability, performance, signature, higher requirements not yet achieved by reduced vulnerability propellant.
 - High Performance Propellant
 - Type III response may present unacceptable collateral damage
- Design Toolkits required
 - Codes and Models, small scale predictive tests...

Knowledge Transfer

Supporting Munitions Safety

- Common Standards
 - Common Procedures
- Compete reporting
 - Processes
 - Results
 - Successes
 - "Failures"
- Information
 - Accurate
 - Standardized
 - Disseminated

Trust

Summary - IM Technology

- Significant progress has been made in terms of technology availability
- An increasing number of reduced vulnerability systems are now in service or are in development
- Recent conflicts have emphasised importance of IM in the operational environment

Request information on systems not included

QUESTIONS?

Thank you

