FACULTY OF MILITARY TECHNOLOGIES UNIVERSITY OF DEFENCE BRNO Czech Republic Armed Forces

INSENSITIVE MUNITIONS & ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM OCTOBER 7-10, 2013 SAN DIEGO, CA, USA

ANALYSIS OF DOUBLE BASE PROPELLANTS SERVICE LIFE RELATING TO MECHANICAL PROPERTIES IN EXTREME CLIMATIC CONDITIONS

Authors: František KREJČÍŘ Pavel KONEČNÝ

INTRODUCTION

Goals of this work were

- to investigate changes in double base (DB) propellants over ageing and
- to determine significance of nitrocellulose (NC) chain decomposition for evaluation of DB propellants service life.

Reasons for this research:

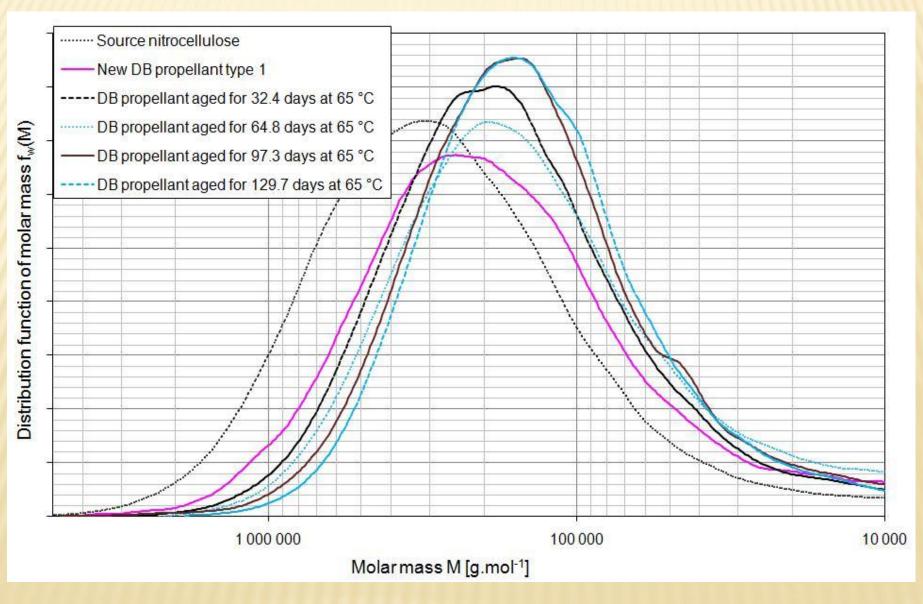
- 1. DB propellants are long term stored.
- 2. DB propellants are exposed to various temperature conditions when stored in field storages (e.g. in extreme climate zones).
- 3. Polymer NC is as a binder of DB is liable to relatively fast decomposition.
- 4. DB propellants markedly change its mechanical properties over operational temperature range.

USED METHODS

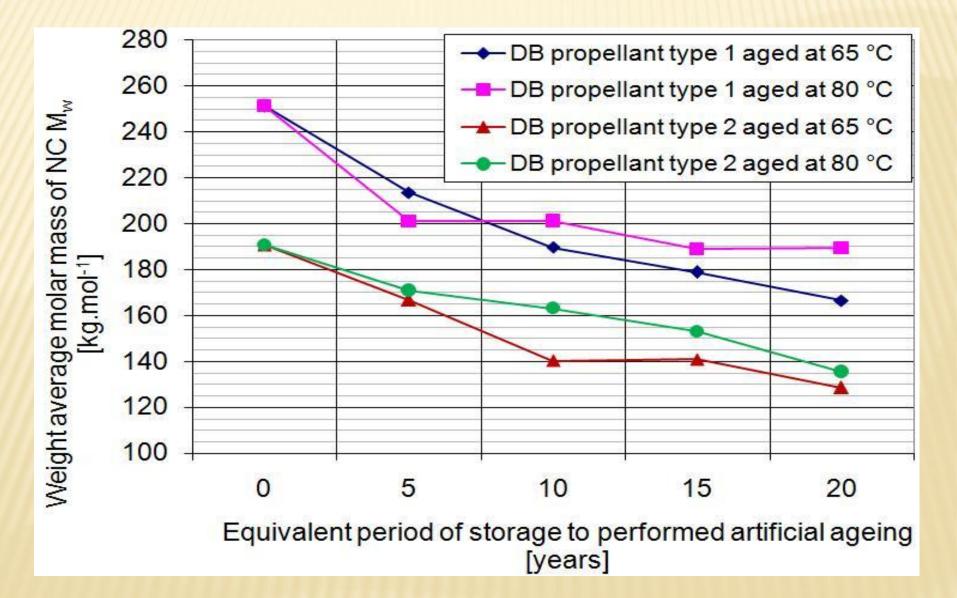
- Artificial ageing simulation of time-temperature loading during storage.
- Size-exclusion chromatography (SEC) determination of nitrocellulose polymer chain decomposition characteristics.
- Uniaxial compression and tensile tests determination of changes of basic mechanical properties.
- Dynamic mechanical analyses determination of transition temperatures and its shift.
- Reaction kinetics analyses determination of predictive decomposition models.

TESTED DB PROPELLANTS

- Type 1 standard DB made by Explosia a.s. (Pardubice, CZE).
- Type 2 with alternative less toxic auxiliary plasticizer.
- NC properties 12% nitrogen, wood cellulose.
- Extruded grains 30 mm in diameter, 300 mm long.


Propellant	Type 1	Type 2
Nitrocellulose	55.7 %	55.7 %
Nitroglycerine	28.3 %	26.0 %
Dinitrotoluene	8.5 %	
Alternative plasticizer		11.5 %
Ethyl centralite	2,9 %	2.9 %
Catalyzers	4,0 %	4.0 %

ARTIFICIAL AGEING


- Conditions set with respect to AOP-48.
- Ageing at two temperatures: 65 °C and 80 °C.
- Grains loaded in polymer coated aluminum bags.
- Ageing periods accordingly to Arrhenius equation (and known kinetic parameters of -NO₂ group decomposition):

Period of storage at 25 °C [years]	Corresponding period of artificial ageing at	
	65 °C	30 °C
	[days]	[days]
5	32.4	5.3
10	64.9	10.6
15	97.3	15.9
20	129.7	21.2

SEC CHROMATOGRAMS

AVERAGE MOLAR MASS OF NITROCELLULOSE

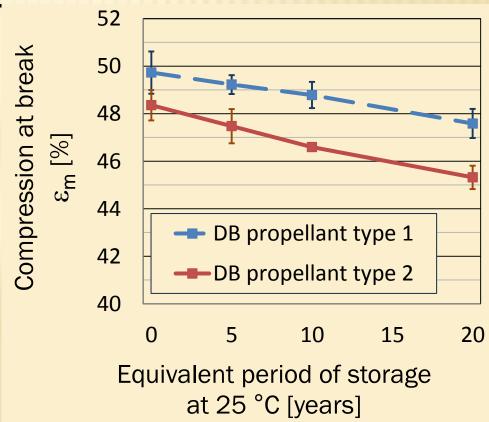
MODEL OF NITROCELLULOSE DECOMPOSITION

- ♦ Kinetic model of chain scission $\frac{m}{M_n(t_i,T)} = \frac{m}{M_n(0)} + k_M(T)t_i$ (solve rate constant from molar masses) $\frac{m}{M_n(t_i,T)} = \frac{m}{M_n(0)} + k_M(T)t_i$
- Arrhenius equation
 (solve activation energy from rate constant)

$$\ln k_{Mi}(T_i) = \ln A - \frac{E_a}{RT_i}$$

Established kinetic parameters of decomposition in temperature range 65 °C to 80 °C:

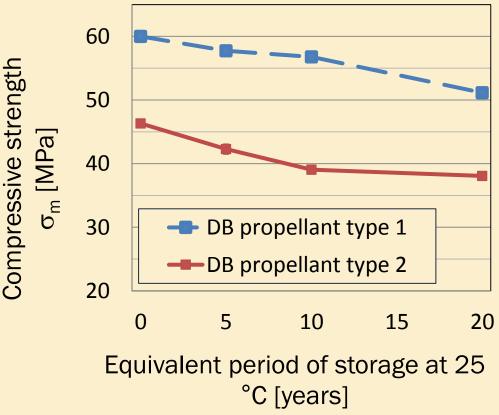
		DB propellant	DB propellant
		type 1	type 2
Activation energy E_a	[kJ.mol ⁻¹]	85	105
Frequency factor A	[-]	1,84.10 ³	3,28.10 ⁶


CHANGES IN MECHANICAL CHARACTERISTICS

Uniaxial tensile and compression tests:

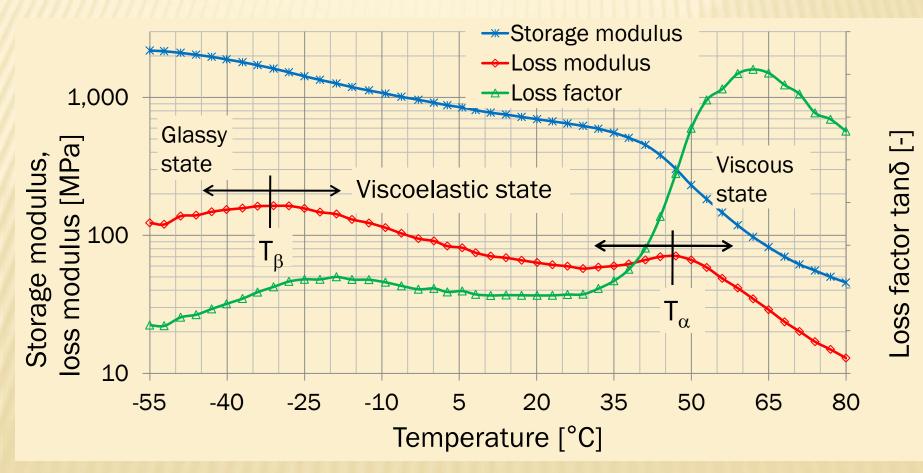
change of ε_m measured at 21 °C (aged for 129.7 days at 65 °C)

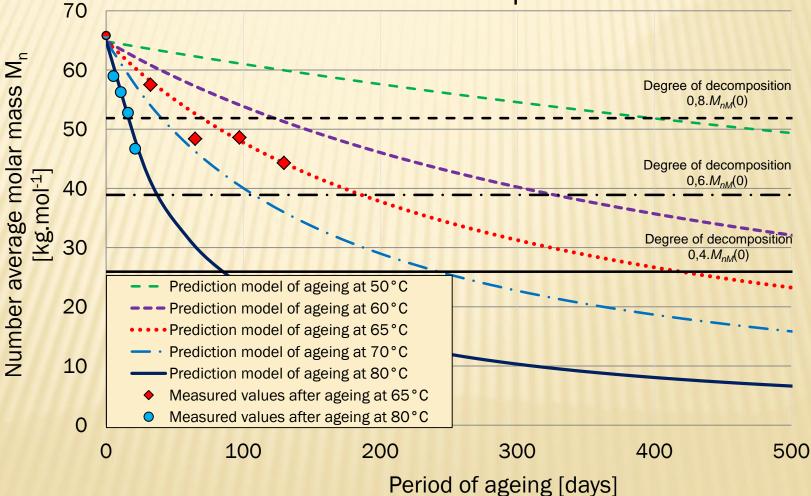
- in compression -4 % and -6 %,
- in tension -7 % and +13 %.



CHANGES IN MECHANICAL CHARACTERISTICS

Decrease of σ_m measured at 21 °C (aged for 129.7 days at 65 °C)


- in compression by 15 % and 18 %,
- in tension by 16 % and 9 %.


DYNAMIC MECHANICAL ANALYSES

• T_{α} lowers during ageing 46 °C \implies 42 °C for both DB. • T_{β} does not show any trend -32 °C, -37 °C for DB type 1, 2.

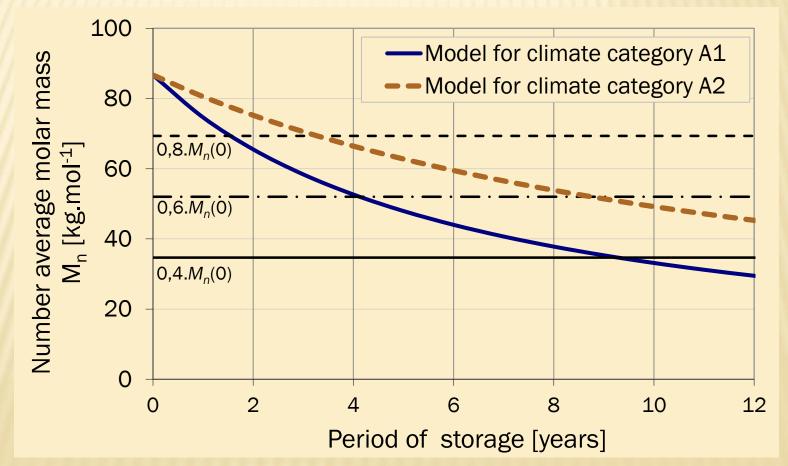
MODEL OF NITROCELLULOSE DECOMPOSITION

Predictive model of decomposition NC for DB type 2 stored at constant temperatures

MODELING OF FIELD STORAGE CONDITIONS

 STANAG 2895 determines climatic categories and timetemperature loadings.

Temperature at storage	Period of temperature loading during one year	SYRIA IRAQ
[° C]	[hours]	Damascus ARD AFGHANISTAN Islamabad
71	5,2	ANY CALIFORNIC TANK
69	26,2	New De
67	49,5	A1 EXTREME HOT DRY
65	77,4	A2 HOT DRY
63	108,7	A3 INTERMEDIATE


Data were used to establish predictive model based on Arrhenius equation in form:

$$M_{n}(t_{n},T_{n}) = M_{n}(0) - \sum_{i}^{n} \left[M_{n}(t_{i-1},T_{i-1}) - \frac{m}{\frac{m}{M_{n}(t_{i-1},T_{i-1})} + A_{i} \exp\left(-\frac{E_{ai}}{RT_{i}}\right) t_{i}} \right]$$

NC CHAIN DECOMPOSITION IN FIELD STORAGE

Service life related to NC chain decomposition:

9,5 years and 11,5 years for DB type 1 and type 2 in climate category A1 (limiting condition 0,4 M_n(0))

CONCLUSION

- Performed artificial ageing of two types of DB propellant at 65 °C during 129.7 days leads to decrease
 - of values of chemical and mechanical properties:
- *M_n* by 34 % and 33 %
- * σ_m at 21 °C in compression by 15 % and 18 %
- ε_m at 21 °C in compression by 4 % and 6 %
- ♦ T_{α} by 4 °C (46 °C -> 42 °C)
- *E_a* of NC chain scission at temperature range 65 °C to 80 °C were established to be 85 kJ.mol⁻¹ and 105 kJ.mol⁻¹.

CONCLUSION

Described processes and changes lead to:

- DB propellants tend to get markedly softer at temperatures near upper operational limit (~ 50 °C) after ageing.
- Service life of DB propellants related to NC decomposition and mechanical characteristics changes could determine overall service life.
- Service life of DB related to M_n , when stored in field conditions in extreme climates, could be limited to ~10 years (accepted condition of limiting decomposition 0,4. $M_n(0)$).

Thank you for your attention

Questions?