Aging of RDX Crystals investigated by X-ray Diffraction

Michael Herrmann and Manfred A. Bohn

2013 IM & EM Technical Symposium

October 7-10, 2013 San Diego, California, USA Abstract number 16106

Literature: Aging of Crystals

Non-EM

phase transitions

- crystal growth and morphologic transitions
- frequency shifts of oscillator crystals
- Ioss of water (e.g. combined with a significant change in color)

Energetic Materials

- release of residual H₂O from HMX
- phase transitions of ammonium nitrate
- significant crystal growth on temperature cycling of AN (Tropicalization)
- no significant changes of the shock sensitivity after aging of PBXN-109 formulations when RS-RDX is included, which does not seem to be the case for standard RDX produced by the Bachmann process
- Aging must be affecting the RDX itself (Spyckerelle)
 - -> Microstructure of Crystals

Microstructure of RDX

Crystal structure

 $C_3H_6N_6O_6$; orthorhombic; Space group: Pbca a = 13.182 Å; b = 11.574 Å; c = 10.709 Å; atom positions....,

- Size and shape of crystals
- Inclusions of solvents
- Impurities, e.g. HMX
- Lattice defects e.g. Dislocations in RDX

Microstructure of RDX

Fig. 3. Dinitroso-related interactions from [100](021) slip.

Dislocation Slip Systems (010)[001], {021} and {02-1} [100] (slip plane and Burgers vector)

Gallagher H.G. et al., *Phil. Trans. R. Soc. Lond.*, **1992**, *A* 339, 293-303 Armstrong R. W. et al., *Proc. Mat. Res. Soc. Symp.*, Vol 296, **1993**, 227-232

X-ray Diffraction (XRD) Techniques for Microstructure

- Non-destructive
- For powders and but also composites as PBX
- Separate information of ingredients
- Benchmarking at the Synchrotron ANKA

 d_{hkl} = lattice plane distance, θ = diffraction angle, λ = wavelength

2θ scans & Rietveld-Analysis (RVA) for fine powders

- Peak positions
 - -> Lattice parameters (Elementary Cell)
 - -> Crystal density
 - -> Residual strain
- Profile (width/shape)
 - -> Crystallite Size
 - -> Microstrain (Double Voigt in RVA)
 - Intensity
 - -> Concentration
 - (Quantitative Analysis)
 - -> Degree of crystallinity

ω -scan for coarse powders (rocking curves)

Source & Detector fixed in reflection condition

Herrmann, M., Kempa, P.B., Doyle, S., 2007, Z. Kristallogr. Suppl. 26, 557.

- Information on single coarse crystallites (grain by grain) fine fraction in underground
- Stochastic multi crystallite analysis

Samples & Experimental

	aged in air*			aged in Ar*	
storage time at 90°C	0 d	15d	30d	15d	30d
2θ scans					
I-RDX, M3C	2 x	1 x	1 x	1 x	1 x
I-RDX, Class 1	2 x	1 x	1 x	1 x	1 x
S-RDX Typ I, Class 5	2 x	1 x	1 x	1 x	1 x
S-RDX Typ I, Class 1	2 x	1 x	1 x	1 x	1 x
ωscans					
I-RDX, Class 1	1 x	1 x	1 x	1 x	1 x
S-RDX Typ I, Class 1	1 x	1 x	1 x	1 x	1 x

Results: Impurities

No significant crystalline HMX in I-RDX but small amount in S-RDX

Results: Rietveld-Analysis (Double Voigt via TOPAS)

- Structure Data from Literature (Choi et al. 1972)
- No size broadening in RDX (Cry Size L = 10000 = max.)
- Microstrain due to dislocations $(\varepsilon_0 = 0.138)$

Results: Size/Strain-Analysis

I-RDX:

Reduced microstrain on aging, no differences between air and Argon

- S-RDX: Increased strain after 15 d but reduced strain after 30 d.
- Different behavior of I-RDX and S-RDX; significantly higher starting values of I-RDX but high strain in S-RDX after 15 d
- Concept of defect healing for I-RDX and S-RDX beyond 15 d

Peak fit of ω -scans

2400 peaks...to provide reliable statistical evaluation

Cumulative peak width distribution

- Shift to right means poor quality or high micro strain
- Plot separates I-RDX from S-RDX
- Significant shift of the distribution of S-RDX on aging
- Quantification by median peak widths (X₅₀)

Median peak widths / quantification of crystal quality (Coarse grades)

- Significant higher quality of I-RDX compared to S-RDX
- Slight improvement of I-RDX on aging (healing process)
- Significant damage of S-RDX on aging!!
- Effects pronounced within the second aging period (15 – 30d)

Summary and Outlook

- Crystalline HMX impurities in the coarse S-RDX
- No size-broadening but microstrain due to dislocations
- Different aging mechanisms in I-RDX and S-RDX
 - strain release / defect healing in I-RDX
 - enhanced strain / crystal damage in S-RDX (crystal damage less clear in fine samples)
- Evaluation of coarse samples aged in argon to be done
- Coarse crystals in the binder should be investigated in future
- Automated evaluation of rocking curves and more detailed evaluation of peak width distribution and quantification of microstrain in future

