

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

MSIAC SCJ Assessment Workshop

2013 INSENSITIVE MUNITIONS & ENERGETIC MATERIALS **TECHNOLOGY SYMPOSIUM**

Manfred "Fred" Becker Warhead Technology Technology Specialist Officer Tel ++32 2 707 5426

M.Becker@msiac.nato.int

8 Oct, 2013 **CORONADO BAY, SAN DIEGO, CA**

Outline

- Workshop Needs and Objectives
- Overview of Technical Approach
 - Specific Topics
 - Anticipated Outcomes
- 2014 Workshop
- Path Forward

SCJ Assessment Workshop

This workshop will focus on developing an advanced assessment methodology for determining munition response to Shaped Charge Jet Attack.

Based on whole body of evidence approach

- Identify small scale testing and modelling capabilities to be used along with all-up-round test results in order to improve confidence in the assessment.
- Review of the SCJ hazard protocol in AOP-39 to improve our knowledge of munition response mechanisms.

By developing an improved understanding of the underpinning science of munition response to SCJ, an improved AUR test will be proposed.

Shaped Charge Jet

- Increased Risk and Exposure during current operations
- IM Technologies that survive SCJ exist
- If SCJ testing is done, significant variance allowed by the Standard
- Last international discussion to focus on SCJ Assessment was in 2000

Custodial Working Group

- In addition, AC326 SG B requested MSAIC support
 - Introduce more realistic aggressions / V²D
 - Better define SCJ characteristics / measurement
 - Make recommendations for STANAG update

STANAG 4526

- Rockeye SCJ not readily available
- V²D concerns expressed
 - 2011 IM Technology Gaps Workshop
 - V²D not representative or realistic

Table 1: Standardized V²D Values in STANAG 4526 Edition 2

Threat	Representative V ² D (mm ³ /μs ²)			
Top Attack Bomblet	200			
SCJ with characteristics of 50mm Rockeye	360			
Rocket Propelled Grenade	430			
Anti-Tank Guided Missile	800			

MSIAC Review

Shaped Charge Jet Review Recommendation for the Review of STANAG 4526 Edition 2

Provided overview of SCJ formation

- Shock-to-Detonation Transition (SDT)
- Bow Shock-to-Detonation Transition (BSDT)

Report O-151 by Dr Pierre-Francois Peron

Possible SCJ Test Assets

Table 2: Shaped Charges Used in the Some Nations

Nation	Shaped charge	Threat level	Jet velocity (mm/µs)	Jet diameter (mm)	V ² D (mm ³ /µs ²)	Specified in IM policy	Laboratory/ in service*
France	CCEB 62 (former version)	RPG-7	8	3	203	Yes	Laboratory
	CCEB 62 (new version)	RPG-7	To be assessed	To be assessed	To be assessed	Yes	Laboratory
Germany	KB44	Bomblet	8	1.9	122**		Laboratory
	RPG 7 NB	RPG-7	7.2	3.1	166**	Yes	Laboratory
UK	BL 755	Bomblet				No	In service
	M42	Bomblet				No	In service
	K4	RPG-7			100	Yes	Laboratory
USA	81 mm SC	RPG-7	6.4	3.5	141	Yes	Laboratory

^{*} In service means that the shaped charge is produced in large scale.

Report O-151 by Dr Pierre-Francois Peron

^{**} The jet tip is not considered.

Workshop Approach

- The workshop will consist of a number of focused discussion groups on key issues. These will be developed under the following areas:
 - Review of shock stimulus and SCJ Hazard assessment protocol (AOP-39, TTCP protocols)
 - Identify Small Scale Testing and Modelling Capabilities
 - Review SCJ AUR Test (STANAG 4526 Ed2)
- Each discussion group will be chaired by a subject matter expert. Volunteers?

Workshop Approach

Review Shock Stimulus

- Examine the events in Shock threat Stimulus / Munition Interaction
- Review AOP-39 IM assessment methodology
- Review Knowledgebase of shock Stimulus
 - Hot spot mechanisms; approaches: critical energy criterion, statistical hot spot models
 - Define importance of SDT vs. BSDT (Bow Shock to Detonation Transition) mechanisms
 - Importance of relative mechanism as a function of jet characteristics and energetic material (in particular critical diameter)

Sub SDT or BSDT response:

Deflagration to Detonation Transition (DDT) Burn to Violent Reaction (BVR)

- Review applicability of DDT and BVR small scale testing and modelling capabilities for SCJ
- Consolidate latest understanding of energetic material reaction growth and violence of response as a function of parameters such as confinement, geometry, and damage.
- Role of spall, SCJ slug

- Small Scale Testing Requirements
 - What fundamental properties must be known
 - During energetic material characterization
 - ◆ To support Models, kinetic parameters, heat flow...
 - Review Sensitivity tests
 - Capabilities and limitations, use as screening tests...
 - Instrumentation
 - Recommended vs. State of the Art
 - Ability to support correlation to AUR testing
 - Identification of gaps and recommendations

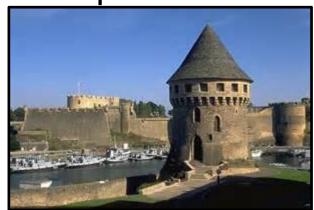
- Modeling Capability
 - Summary of current tools
 - Capabilities, approaches, and maturity levels
 - Availability and accessibility / ease of use -- expert
 - Identify data input requirements
 - Discuss validation strategy and implication for AUR testing
 - Identification of Gaps and recommendations

- AUR SCJ Impact Test
 - Discuss specifics for SCJ Impact (MSIAC Document O-151).
 - Discuss AUR SCJ test STANAG 4526
 - Agree deficiencies and needs
 - Define SCJ characteristics based on understanding of the response mechanisms.
 - Agree on means to characterize SCJ stimuli
 - Define aggression level(s) for STANAG 4526
 - Agree test configuration
 - Recommendations for STANAG 4526 improvement

Workshop Deliverables

- Development of an assessment methodology for SCJ attack, with improved understanding of reaction mechanisms particularly SDT and BSDT.
 - Recommendations for improving STANAG 4526 SCJ AUR test based on a sound scientific understanding
 - Identified capability gaps with recommendations on improvements
- Exploitation of scientific understanding, small scale tests, and modelling to support IM assessment
 - Inroads to IM assessments based on whole body of evidence approach vs. single AUR test results to improve confidence in assessment

ENSTA Bretagne


MSIAC Workshop Time and Location

France has agree to facilitate location

- ENSTA Bretagne
- Brest France
- 13 16 May, 2014
 - ~4 days, w Plenary Session

Will refine based on interest and pre-workshop

inputs

Workshop Planning

- Workshop announcement
 - Nov 2013
 - Response of interested parties
- Gather IM assessment methodology
 - Use of small scale testing or modelling, screening tests etc...
- Dissemination of relevant information to planned participants
 - Supports Plenary Session and breakouts

Summary

- Review of SCJ Assessment methodology
- Improved understanding of the underlying Science
- Review of Small Scale Testing & Modeling
- Recommendations for STANAG 4526

MSIAC Workshop
Brest France
12 – 16 May, 2014

Questions

