

NDIA

2013 Insensitive Munitions & Energetic Materials Technology Symposium

SYNTHESIS OF ENERGETIC MATERIALS USING CARBON NANOSTRUCTURES

Chang Ha Lee, Seungjoo Haam

Converged Energy Materials Research Center (CEMRC) Dept. of Chemical and Biomolecular Eng., Yonsei University, Seoul, Korea (leech@yonsei.ac.kr)

Hyerim Choi, Woo-Jae Kim

Dept. of Chemical and Biological Eng., Gachon University, Seongnam, Korea

Jung Min Lee, Hyoun Soo Kim

Agency for Defense Development, Daejeon, Korea

the Next-Generation Converged Energy Materials Research Center (CEMRC)

- Director: Prof. Chang-Ha Lee Yonsei University
- Period: 2012 2020
- Research Group: 11 Univ. & 1 Research Institute (34 doctors)
- Budget: about 10 mill. USD/9-yr

✓ Design and synthesis capability for the next-generation converged energetic materials

✓ Development of more powerful & less sensitive energetic materials

✓ Eco-friendly green technology for decayed energetic materials to valuable compounds

차세대 융복합 에너지물질 특화센터

YONSEI

Technical Road Map of **CEMRC**

Research on Energetic materials

Research on energetic materials focuses on

- •Enhancing the power of its composites
- Increasing its insensitivity & stability
- •Controlling the detonation properties
- Mixing several chemicals to tune the explosive reactivity

Potential benefits of nano-energetic materials:

- •More powerful *Higher density.*
- •More reliable & reproducible Controlled rate of energy release.
- •Safer to handle Reduced sensitivity.

Nanomaterials : New platform for energetic materials

Advantages of Nanomaterials as new energetic materials

- Increased surface areas for higher density
- -Enhancement of chemical reactivity by high thermal conductivity
- -Ability to form composites with fuels by surface functionalization

Nanostructured Energetic Materials is a new concept composite powder, which can dramatically improve the performance of gunpowder and explosives

Single-Walled Carbon Nanotubes (SWNT)

Method of rolling graphene determines electronic property of SWNTs

SWNTs can be either Metallic or Semiconducting

Properties of Carbon Nanotubes

Issues and Motivations

CNT guide thermal waves generated by the combustion of Cyclotrimethylene trinitramine (TNA) (*Choi et al., Nature Mater. 9, p424, 2010*)

The reaction velocity of TNA coated on CNT : 1,000~10,000 times faster than that of bulk TNA
 CNT with high thermal conductivity: Guide a chemically produced thermal wave

Technology Issues

Heterogeneities in the thickness of MWNTs as well as the TNA coated on the MWNT surface of MWNT/TNA composites

- Irregular performance along axial positions of the composites
- Performance controllability issue

Objectives

- 1. Achieve homogeneities of energetic materials-CNT composites (control issue)
 - CNT : Single-walled carbon nanotube (vs. multi-walled carbon nanotube)
 - Energetic materials : chemical attachment (vs. physical)
- 2. Increase combustion efficiency
 - CNT with high conductivity

Key factors investigated

We synthesized a series of nitrophenyl decorated CNT using diazonium chemistry

- ► explored CNT, with energetic materials, <u>can release energy in a controllable manner</u>
- investigate how thermal conductivity of CNT <u>affects self-propagating explosive reactions</u>

Diazonium chemistry: attach energetic materials on CNT

Electron transfer reaction between CNT – Diazonium

- Favored when oxidation potential of CNT > reduction potential of diazonium
- Nitrobenzene diazonium : highly reactive towards CNT
- Diazonium chemistry is efficient scheme to attach energetic molecule (Nitrobenzene) onto CNT surface homogeneously with high density

Covalent reaction scheme

mono- nitrobenzene diazonium synthesis

Experimental

Energetic Materials Used

- SWNT with different thermal conductivity used
 - HiPco SWNT (Hi-Pressure CO method) : low thermal/electrical conductivity
 - Arc SWNT (Arc Discharge method) : high thermal/electrical conductivity

Energetic materials-CNT composites formation

Reaction

Raman : D-band increases

UV-vis-nIR: absorption decays

Nitrophenyl groups (energetic materials) successfully attached to SWNT (monolayer deposition)

Chemical Attachment Effect

Experimental

• Synthesis of silica nanoparticles as a template of nanoparticle.

Synthesis of carbon nanoparticles

- AICI₃6H₂O was added to strengthen the silica nanoparticles
- Phenol and Paraformaldehyde was added and heated for 36h to generate carbon nanoparticles.

Synthesis of silica nanoparticles as a template of Porous Carbon Nanoparticle

sphere silica nanoparticles

Porous Layer coated Silica Nanoparticles

Pore-Enlarged Silica Nanoparticle (scale bar : 50 nm)

As a template for the porous carbon nanoparticle, we synthesized silica nanoparticles which possess multi-channel.

In order to load large amount of energetic materials, we made sphere silica nanoparticles inside, which will be removed and put out vacant volume as well as enlarge the pore diameter

Synthesis of Carbon Nanoparticle

silica nanoparticles

Carbon materials coated nanoparticles

We coated the carbon materials on the silica nanoparticles. And it was confirmed that the structure of nanoparticles were maintained

Future Work : we plan to remove the silica template in order to bring out the vacant volume to load energetic materials inside vacant space.

Part II: Porous Carbon Nanoparticle

Conclusions

- Homogeneous energetic materials-CNT composites were successfully formed using covalent chemistry.
- Chemically bonded composites release energy at low temperatures over physically mixed ones.
- 3. Composites with highly conductive CNT show explosion at lower temperatures.
- 4. Synthesis of silica nanoparticles as a template was successfully fabricated.
- 5. For the better loading capacity, silica template of carbon nano particles are planned to be evacuated.
- Enlarged cavity with carbon materials in carbon nanoparticles are expected to contribute better performances in loading and stabilizaing large amount of energetic materials.

KISHEM-3 will be held in September, 2014: Yonsei University in Seoul, Korea (More information: <u>http://www.kishem.co.kr</u>)

TOPICS

- · Propellants
- · High Explosives
- · Insensitive Munitions
- \cdot Ageing
- · Performance
- \cdot Synthesis
- Transformation of Decayed/Expired Materials

- · Characterization
- Nano-Materials
 Improvements
- Manufacturing
- · Detonation
- · Physical Properties
- · Theory

The world's oldest movable metal type invented by Korea and its printed evidence Registered as Memory of the World, A.D. 1377

Gilt-bronze Seated Maitreya in Meditation National Treasure No.78 Three Kingdom era (A.D. 200-700)

IMPORTANT DATES

- \cdot Due date for One-page Abstract: May 15, 2014
- Abstract Acceptance Notice: June 30, 2014
- Due date for Registration: July 31, 2014
- Session Schedule Notice: End of July, 2013

Yonsei Univ.

Han River at night

Changdeokgung Palace (A.D. 1484) and Skyscrapers

Thank you for your attention!

Supported by

- Defense Acquisition Program Administration (DAPA)
- Agency for Defense Development (ADD)

- Defense Agency for Technology and Quality (DATQ)