What is System Architecture?

• Wikipedia:
 – A system architecture or systems architecture is the conceptual model that defines the structure, behavior, and more views of a system.

• IEEE:
 – The composite of the physical architectures for consumer products and their life-cycle processes. (P1220)
 – The organizational structure of a system or component. (STD 610.12)
 – A logical or physical representation of a product which depicts its structure, but, provides few or no implementation details. (P1220)

• DERA
 – The structure of levels and/or branches that partition a system into its constituent parts or components.

• NASA
 – How functions are grouped together and interact with each other. (MDP92)
Definition of System Architecture

• As used in Rockwell Collins Architecture Standard
 – The fundamental organization of a system embodied in its components, their relationships to each other and to the environment, and the principles guiding its design and evolution.
Architecture in the TCP

- Capture Originating Requirements
- Define Requirements
- Define Operational Concepts
- Develop Validation Cases & Procedures
- Develop Verification Cases & Procedures
- Develop Acceptance Procedures
- Design Solution
- Integrate Solution
- Verify Solution
- Validate Solution
- Support Solution

Define Logical Solution Architecture (how does it all fit together?)
Define Physical Solution Architecture (what will the solution look like?)
Define Product External Interface (What is the interface structure?)
Define Product Internal Interface (What is the interface structure?)

Perform product X analysis

Develop Detailed Design
Top-Down Hierarchical System Architecture

What potential problems could be experienced with “top-down” only architecting??

Where did this come from??

© Copyright 2012 Rockwell Collins
All right reserved.
Traditional Top-Down System Approach

- What is a “subsystem”?

- How does a “system” differ from a “subsystem”?

- Can a system share components with other systems within the same hierarchy?

- What happens when the “subsystem” does not have unique components?

- How has “plug and play” and “modularity” changed the way we engineer or manage our products?
Characteristics of Integrated Modular Solution Architecture (IMSA)

- Independent software architectures
 - Software architecture can exist independently from underlying physical hardware architecture!
 - Two projects with identical software architecture could have very different hardware configurations.
 - Software applications/ programs can reside anywhere in overall physical hardware architecture
 - Application software design abstracts out hardware interface so that it is not tied to a single box
 - Software architecture defined independently from the hardware
 - Allocation of application software to specific processors requires analysis to assess resource usage
 - Concerns – latency, throughput, and processor loading – can the underlying architecture handle resource usage?
Characteristics of IMSA

• Processor architectures allowing more densely packed boxes
 – Will that be one processor? Or two? Or three? On one card? On one chip?
 • Shared memory? Dedicated memory?
 • Shared I/O? Dedicated I/O?
 – Processor architecture can be defined independently of mechanical architecture/ packaging
 • Allocation of processors to specific boards requires analysis to assess resource usage
 • Concerns – package density, EMI, thermal loading – can the underlying mechanical structure handle resource usage?
Solution Architecture Views

• No one “picture” shows the full architecture of the solution
 – How is the architecture captured and managed?
 – Is a hierarchy view enough?

• Architecture contains
 – Components with structure and composition
 – Behavior showing inputs, processing, and outputs
 – Relationships showing interconnectivity of the solution

• Multiple perspectives result in multiple views of the architecture
 – Software, Hardware, Behavioral, etc.

• Interdependencies between views must also be captured
 – Interfaces and relationships
Integrated Modular Solution Architecture (IMSA)

Views composing a complete picture of a system architecture
"Your House for Example"
Hierarchy Tiers

- **System**
 - A set of interacting or interdependent components forming an integrated whole

- **Subsystem**
 - A set of elements, which is a system itself, and a component of a larger system

- **Component**
 - The constituents of a system

Definitions from Wikipedia
Hierarchy Tiers in the TCP

- Logical Representation
- Physical Representation
- Instantiation
- System
- Subsystem
- Component
- Hierarchy
- Abstraction
- Realization
- Capability
- Service
- Support

Implementation

System
Subsystem
Component
Hierarchy
Function
Function
Function
Abstraction Views

Abstraction layers partition architectural elements into isolated layers so that changes can be made in one layer without affecting the other layers.

- **Capability Views**
 - Mission or primary purpose of the product
- **Service Views**
 - Needed services to enable primary purpose
- **Support Views**
 - Foundational elements to bind the solution together

Service and Support layers are optional, depending on depth of abstraction needed in your architecture.
Realization Views

- Progression from left to right proceeds from abstract, notional concepts to tangible assets to realized components
Realization Views
Architectural Perspectives

- Hierarchical Perspective
 - Focused on organization of things

- Chronological/ Sequential Perspective
 - Focused on the timing of things

- Transactional Perspective
 - Focused on the transfer of interface objects

- Allocation (Deployment) Perspective
 - Focused on the realization of things – where does it live?
Logical Representation Views

- Use Case Views
- Behavioral Views
- Functional Views

Logical element
Also known as:
- Function
- Activity
- Work
- Process
- Role
Logical Representations Summary

Hierarchical Perspective
Sequential Perspective
Transactional Perspective
Allocation Perspective
Physical Representation Views

- Software View
- Electrical View (Network)
- Mechanical View (Hardware)
- Infrastructure View
Logical Allocation into Physical Views

- **Logical Representation**
- **Software View**
- **Electrical View (Network)**
- **Mechanical View (Hardware)**
- **Infrastructure View**
Physical Representation – Software View

• Software Views
 - Hierarchical Perspective
 - Sequential Perspective
 - Transactional Perspective (Messaging)
 - Allocation Perspective (from logical)
Software View – Hierarchical Perspective

Explicit Hierarchy
“a part of” - aggregation

Explicit Hierarchy
“is a” - generalization

Implicit Hierarchy superimposed
Software View – Transactional Perspective

Implicit Hierarchy - Showing with superposition

Ports and Flows – where the data words flow
Software View – Allocation Perspective
Logical Elements to Software Elements

Explicit allocation of function to software component

Implicit allocation of function to software component
Software Allocation to Electrical

- Software View

Allocation (or Deployment) Perspective (to Electrical)
Explicit allocation/deployment of software components onto processor.

Implicit allocation/deployment of software components onto processor.
Physical Representation – Electrical View

- Electrical View (Network)
 - Hierarchical Perspective
 - Sequential Perspective
 - Transactional Perspective (Datalinks and Signals)
 - Allocation Perspective (from Logical) Allocation (or Deployment) Perspective (from Software)
Electrical View (Network) – Hierarchical Perspective

- **Explicit hierarchy relationship**
- **Implicit hierarchy - superimposed**
- **Network Nodes**

- **Classification relationship**

- **Electrical_View (Network)**
 - **Hierarchical Perspective**
 - **Network Nodes**
 - **GPPU1**: GeneralProcessing
 - **GPPU2**: GeneralProcessing
 - **GPPU3**: GeneralProcessing
 - **video**: VideoProcessing

- **Implicit hierarchy - superimposed**

- **Classification relationship**

- **Explicit hierarchy relationship**

© Copyright 2012 Rockwell Collins
All rights reserved.

Slide 30
Electrical View (Network) – Transactional Perspective

Signal transactions and ports

© Copyright 2012 Rockwell Collins
All right reserved.
Electrical View (Network) – Allocation Perspective
Logical to Electrical Node

- Only do this for logical behavior that does not have a software component trace
Electrical Allocation to Mechanical (Hardware)

- Electrical View

Allocation (or Deployment) Perspective (to Hardware)
Electrical View (Network) – Allocation (Deployment) Perspective – Network Node to Mechanical Hardware

Explicit allocation of node onto hardware.

Implicit allocation of node onto hardware.
Physical Representation – Mechanical View

- Mechanical (Hardware) View

 Hierarchical Perspective

 Sequential Perspective (uncommon in avionics)

 Transactional Perspective (connections)

 Allocation Perspective (from Logical) Allocation (or Deployment) Perspective (from Network)
Mechanical View (Hardware) – Hierarchical Perspective

Explicit hierarchy relationship

Implicit hierarchy - superimposed
Mechanical View – Transactional Perspective

eChef

«LRU»
cookbook : MealPlanner
«Connector» Enet

«LRU»
pantry : Inventory Server
«Connector» Enet

«LRU»
grocer : Supplier Server
«Connector» Enet

«LRU»
switch : Network Switch
«Connector» P1
«Connector» P2
«Connector» P3
Allocate logical elements that do not have a software or electrical component allocation

Explicit allocation of functionality to hardware.

Implicit allocation of node onto hardware.
Mechanical (Hardware) Allocation to Infrastructure

- Mechanical (Hardware) View

Allocation (or Deployment) Perspective (to Infrastructure)
Mechanical View – Allocation (Deployment) Perspective
Mechanical (Hardware) to Infrastructure
Integrated Modular Solution Architecture (IMSA)

Views composing a complete picture of a system architecture
Logical Representation Views

- Use Case Views
- Behavioral Views
- Functional Views

Logical element

Also known as:
- Function
- Activity
- Work
- Process
- Role
Physical Representation Views

- Software View
- Electrical View (Network)
- Mechanical View (Hardware)
- Infrastructure View
Architectural Perspectives

- Hierarchical Perspective
 - Focused on organization of things

- Sequential Perspective
 - Focused on the timing of things

- Transactional Perspective
 - Focused on the transfer of interface objects

- Allocation (Deployment) Perspective
 - Focused on the realization of things – where does it live?
© Copyright 2012 Rockwell Collins
All right reserved.