Developing a Cost Estimation Probability Model of a Large Multi-Year System – An Experience Report

NDIA 2012

Kathleen Dangle, Madeline Diep, and Forrest Shull
Fraunhofer Center for Experimental Software Engineering
Context of Our Experience

• Program characteristics:
 – Aerospace domain
 – Large and mission-critical system
 – Prime contractor with many partners and subcontractors
 – Distributed development
 – Government oversight
 – Software-intensive and COTS heavy

• Cost estimation in preparation for Key Decision Point (KDP) to enter *Concept & Technology Development*
Cost estimation is an important part of program planning and tracking

But it can be very difficult to do accurately
 – Single-point estimation does not account for uncertainties in the estimation sources and errors in the model

Probability distribution model helps to understand the likelihood of achieving the point estimate
 – Required to budget the cost estimate at the 70% confidence level.
Include probability distributions... As outlined in the GAO Publication*

1. Determine the program cost drivers and associated risks;
2. Develop probability distributions to model various types of uncertainty (for example, program, technical, external, organizational, program management including cost estimating and scheduling);
3. Account for correlation between cost elements to properly capture risk;
4. Perform the uncertainty analysis using a Monte Carlo simulation model;
5. Identify the probability level associated with the point estimate;
6. Recommend sufficient contingency reserves to achieve levels of confidence acceptable to the organization; and
7. Allocate, phase, and convert a risk-adjusted cost estimate to then-year dollars and identify high-risk elements to help in risk mitigation efforts.

*GAO Cost Estimating and Assessment Guide, GAO-09-3SP, March 2009
About Probability Distribution Models

- Usually represented in two views:
 - Probability Density Function (PDF)
 - Cumulative Density Function (CDF or S-curve)

- Describe the probability that a variable have a value less than or equal to x

$P(X>1)$

~81% likelihood that X will not exceeds 1
Step 1: Select Probability Model

- A number of probability distribution models are available to represent cost risks for the different cost elements.

- We selected the Weibull probability distribution
 - Traditionally used for reliability models
 - Flexible -- its three parameters can be adjusted to represent distribution curves such as the normal, logarithmic, Rayleigh, and exponential
 - A single model with the ability to accommodate multiple cost model profiles
On the Weibull Distribution

• Three parameters of Weibull model:
 – **Shape**: Affects the shape of the model, as well as slope of the model
 – **Scale**: Increasing its value while holding “Shape” variable constant has the effect of stretching out the probability model
 – **Location**: Provides an offset for the starting value of the (cost) variable
Building the Model

- Select Probability Model
- Derive Bases of Estimates
- Generate Model Profiles
- Consolidate Model Profiles
Step 2: Derive Bases of Estimates

- Large Program = Large and deeply nested WBS
 - Impractical to create a cost model for each item in the Work Break-down Structure (WBS)

- Created “buckets” for the WBS items and generated a cost model for each bucket
 - Items in a bucket should, intuitively, have similar types of uncertainty or risks
 - Buckets should be general enough to contain all items under Level 3 or 4 WBS elements
Buckets of Cost Elements

Sub-systems Development

- **Software Dev Effort**
- **Non-Software Labor**
- **HW/SW Cost (Logs & license)**

Program Management & Other cross cutting cost

System Eng I&T

Deployment

SW development effort includes COTS labor, VHDL development effort, maintenance, support (documentation)

Non-SW Labor includes sub-system engineering labor, I&T, COTS and HW operational related labor (handling, shipping)
Building the Model

1. Select Probability Model
2. Derive Bases of Estimates
3. Generate Model Profiles
4. Consolidate Model Profiles

© 2012 Fraunhofer USA, Inc.
Center for Experimental Software Engineering
Step 3: Generate Model Profiles

1. **Create preliminary model for each cost bucket**
2. **Meet with element SME and obtain feedback**
3. **Adjust Models based on SMEs feedback and other known risks**
4. **Send Models to SMEs for review**

- Known technology readiness issues
- SW size
- CCRs
- Supplier performance history
- etc.

- Known adjustments to IBR data
- Expected model profile and range based on expert judgment
- COCOMO output
- Etc.
Preliminary Model

• For all “buckets”, set the **location** variable to be the original Initial Baseline Review (IBR) estimation

• Criteria for setting the **scale** and **shape** parameters:
 – For sub-systems’ **software cost** bucket
 • Software labor cost tends to have larger uncertainty and to be prone to underestimations → the model is **skewed to the left** (median value >> IBR estimates)
 • Used variability in SW sizes (likely and high estimates) to adjust the skewness → the higher the variability, the more skewed the model
 – For sub-systems’ **hardware/software cost** bucket
 • HW/SW material and licensing cost is generally stable where variability comes from amount of equipment to acquire → the model was **skewed to the right** (median value > IBR estimates)
 – For sub-systems’ **non-SW labor & program management** (cross cutting concerns), I&T, and Deployment bucket
 • Some variability is expected → used **normal distribution** model
Getting Subject Matter Expert Input

• Talked to 1-2 SMEs from each major sub-components
• Presented the preliminary model
• To facilitate the discussion, provided reference model of a set of Weibull distribution profiles
• Captured feedback:
 – The range and skewness of the model
 – Justification for the profile:
 • Known issues, other estimation analyses, perceived risks
Adjusting the Model

• Incorporated feedback from the SMEs and any known estimate adjustments thus far, as well as the dollar value of risk exposure

• Performed sanity check:
 – Use COCOMO analysis to estimate software development effort/cost based on estimated software size
 – Ensure that the model “includes” the COCOMO output
Building the Model

- Select Probability Model
- Derive Bases of Estimates
- Generate Model Profiles
- Consolidate Model Profiles
Step 4: Consolidate Model Profiles

Generate a cost model for each sub-system by “summing” SW effort, HW/SW cost, and non-SW labor

Correlate cost-models of the sub-systems

Generate the Program cost model by “summing” all the cost-models
“Summing” the Models

• Used *Monte Carlo* simulations to “sum” the models
 – Repeatedly generated a random value following the defined distribution model
 – For each sampling, summed the generated value across all the distribution models
 – Created histograms of the sum generated from all the samplings

• Note: The number of iterations/samples can significantly affect the range of the model
 – We used 10,000 iterations/samples, and still observed some sensitivity in the produced models
Parting Thoughts

• We described our approach for generating cost-estimation probability distribution models

• Some lessons learned:
 – A WBS that makes key cost drivers “visible” makes it easier to “bucket” cost items in a manageable way.
 – Weibull is a flexible model, but may not be as popular as other models → lack of accessible statistical tool support for performing more sophisticated activities, such as model correlation.

• Program is still ongoing
 – The cost model have been vetted by a separate cost policy team
 – *We are collecting the data now for the quantitative validation*
List of Abbreviations

- CCR: Contractor Cost Report
- I&T: integration and Test
- IBR: Initial Baseline Review
- SME: Subject Matter Expertise
- VHDL: VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
Questions?

Contact Information

Madeline Diep
mdiep@fc-md.umd.edu
240-487-2937
Backup
Fraunhofer Center Maryland

- A not-for-profit applied research & technology transfer organization
- Mission: Advance real-world software practices via empirically validated research into software-engineering technologies and processes
- Work closely with the customer to develop unique, innovative solutions within their business context
- Purveyor of best practices to organizations inside and outside of the software industry
- Affiliated with Fraunhofer-Gesellschaft in Germany and University of Maryland at College Park
Fraunhofer Center Maryland

- **Competences**
 - Security, reliability & safety analysis
 - Software design & architecture analysis
 - Software testing, verification & validation
 - Technology evaluation
 - Software product & process evaluation
 - CMMI training & coaching
 - Program, project, and risk management

- **Deep expertise in**
 - Goal-driven, measurement-based process and product improvement
 - Software defect causal analysis and resolution
 - Process improvement and best practices