

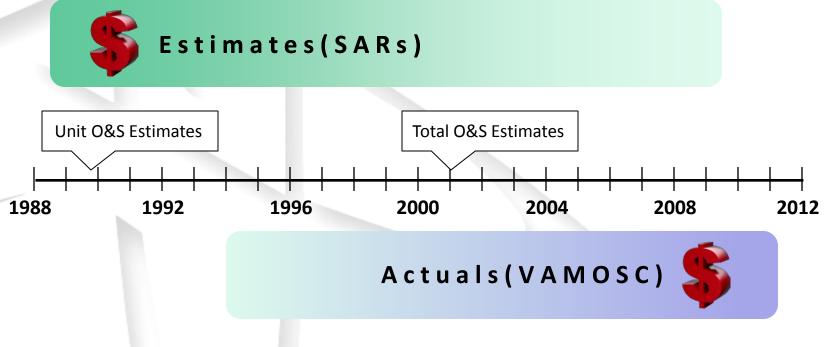
U.S. AIR FORGI

A MACRO-STOCHASTIC MODEL TO IMPROVE THE ACCURACY OF DoD LIFE CYCLE COST ESTIMATES

Erin Ryan, Major, PhD

Air Force Institute of Technology

- Characterization Study
- Why are Estimates Poor?
- "Macro-Stochastic" Cost Estimating
 - Theoretical Results
 - Validated Results
- Caveats
- Now What?



Three elements required

- Estimates, Actuals, and Elapsed Time
- Predictions vs. "ground truth"

• O&S Cost

 Total cost to sustain weapon system after fielding

Annual Unit O&S Cost (AUC)

• Yearly cost to maintain per unit

Life Cycle Cost (LCC)

- Total cost to govt spanning all phases of the program's life
 - Development, procurement, operation, sustainment, & disposal
- Essentially LCC = Total Acq Costs
 + Total O&S Costs

O&S Costs comprise 60-75% of Life Cycle Costs*

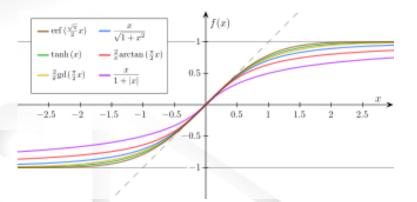
- Accuracy of O&S-based cost estimates is poor and improves little over time
 - AUC Estimates
 - Magnitude of mean errors ~40%; reduces ~1% per year on average
 - LCC Estimates
 - Magnitude of mean errors ~20%; reduces ~1.5% per year on average
- O&S-based cost estimates behave differently than acquisition cost estimates
 - Greater levels of inaccuracy; do not converge
- Decision Analysis
 - Validity of value decisions based on AUC/LCC estimates?

More Key Findings

The AFIT of Today is the Air Force of Tomorrow

- Many other elements of a program have significant relationship with estimate accuracy
 - Type of system
 - Size of acquisition effort
 - Procurement Quantity
 - Cost Variance Trends

Opportunity to improve cost estimating...


Why Are Estimates Poor?

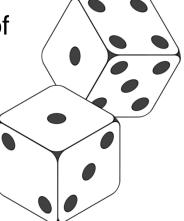
The AFIT of Today is the Air Force of Tomorrow

Many sophisticated cost estimating techniques

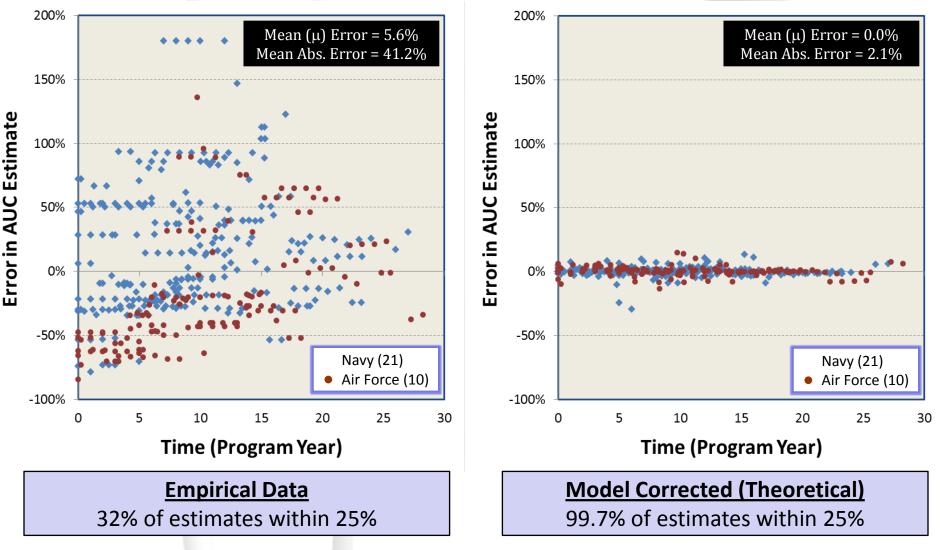
 e.g., probability distributions, confidence intervals, s-curves, Monte Carlo simulations, and sensitivity analyses

All assume a fixed baseline

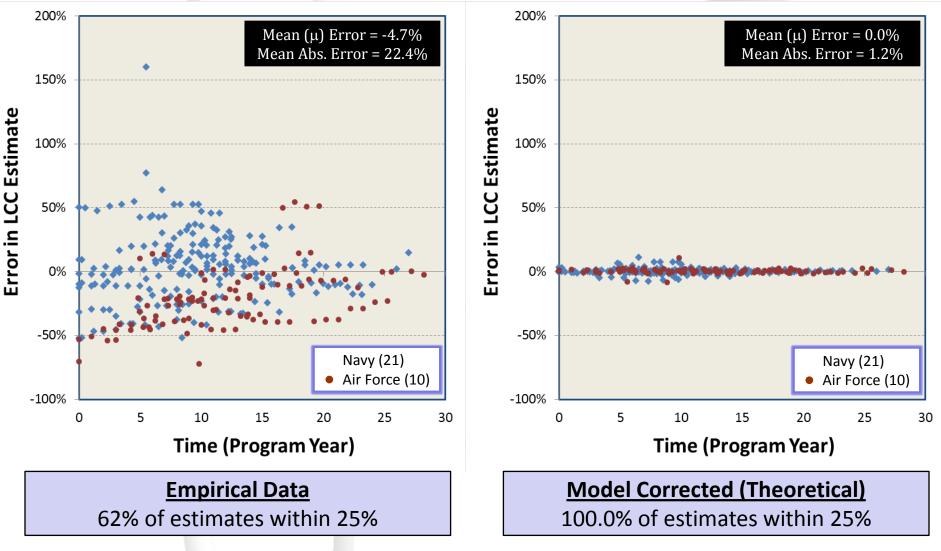
- APB deviations are virtually inevitable
- Link to APB represents flaw in current estimate process



Need alternate cost estimating methodology

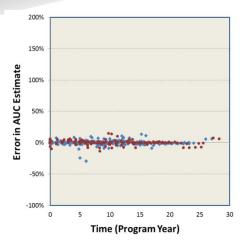

Treat estimate error as a stochastic variable

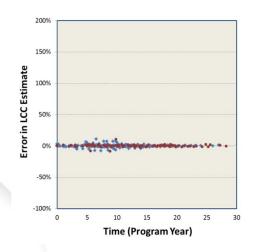
- Examine top-level program summary indicators
 - e.g., Service component, type of system, program size, program maturity, prime contractor, breach patterns, cost variance trends, procurement quantities, reqmnt trends
- "Macro-stochastic" cost estimation
- Can certain variables serve as effective predictors of estimate errors?


AUC Macro-Stochastic Model

LCC Macro-Stochastic Model

Estimate Errors are Random


The AFIT of Today is the Air Force of Tomorrow


• Strong Pattern of Estimating Errors

- Each program has its own pattern
- Just 3 variables
 - Change in procurement quantity
 - Current acq cost estimate
 - Current LCC estimate

Estimate Errors are Random

• However...

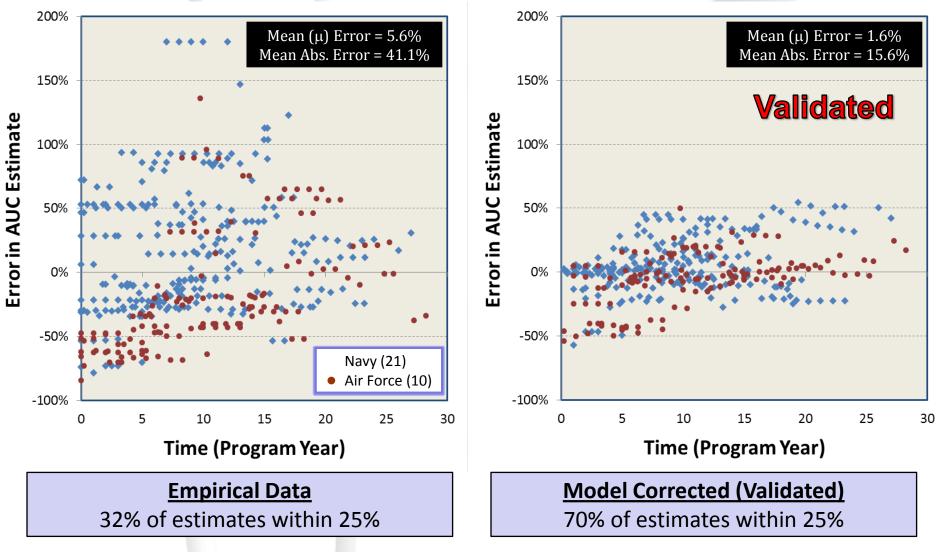
- Theoretical model not useful for prediction
 - Takes too long to identify specific pattern
- Strategy to make the model capable of prediction
 - Program Categories
 - "Market sector"
 - DoD component, type of system, size of program

Program Categories

The AFIT of Today is the Air Force of Tomorrow

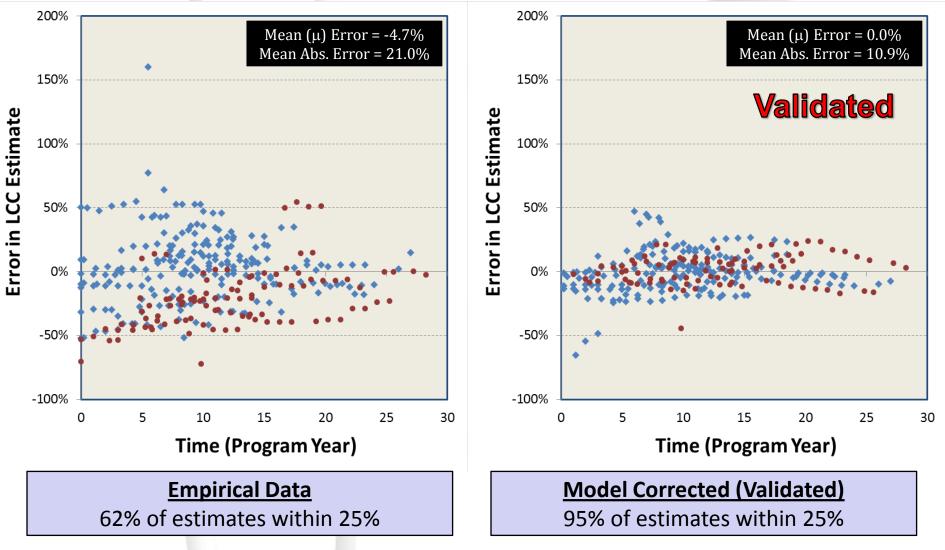
PCat	DoD Comp	System Type	Size (Mean Acq Cost Est, BY10)	
1	AF	Aviation	Small (≤ \$18.0B)	
2	Navy	Aviation	Small (≤ \$18.0B)	
3	Both	Aviation	Large (> \$18.0B)	
4	Navy	Maritime	Small (≤ \$8.5B)	
5	Navy	Maritime	Medium (\$8.5B – \$30.0B)	
6	Navy	Maritime	Large (> \$30.0B)	
7 Both		Munition	All	
			TOTALS	

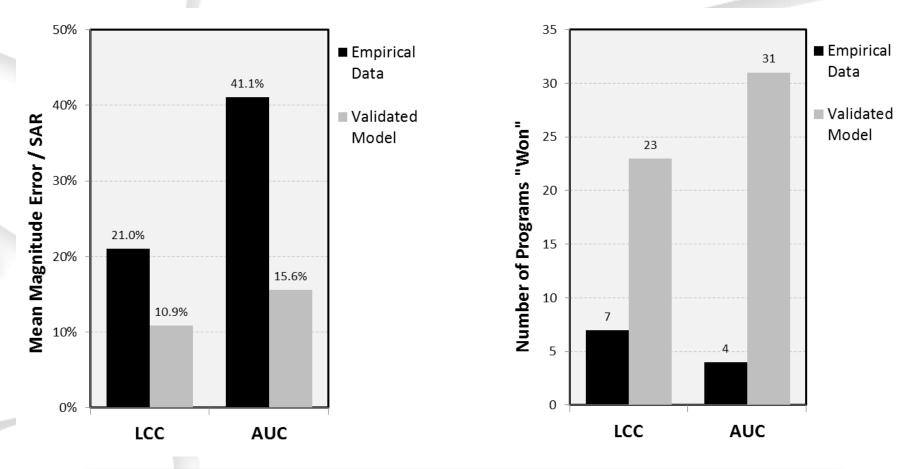
Model Variables


The AFIT of Today is the Air Force of Tomorrow

LCC	AUC		
DoD Component	DoD Component		
Acquisition Type	Acquisition Type		
Acquisition Cost Estimate	Acquisition Cost Estimate		
Nunn-McCurdy Breach	Acquisition Phase		
Procurement Quantity Change	Procurement Quantity Change		
	Planned Procurement Quantity		
LCC Estimate	AUC Estimate		
Cost Variance, Estimating	Cost Variance, Estimating		
Cost Variance, Quantity	Cost Variance, Quantity		
	Cost Variance, Engineering		
Cost Variance, Total	Cost Variance, Total		

AUC Model Performance




LCC Model Performance

A Better Cost Estimating Model

The AFIT of Today is the Air Force of Tomorrow

Average estimating improvement: \$2.6B/program

- Significant Improvement in Accuracy
 - Magnitude and variability of average errors reduced 50-60%
 - Improves expected estimate fidelity by tens of billions of dollars

Minimal Effort

• Model-derived correction factor available in hours

Model validity independent of characterization study

• Characterization study results inform model parameters

Certain types and degrees of change in certain types of programs do tend to affect the accuracy of the current cost estimates in relatively predictable ways

Model Caveats

The AFIT of Today is the Air Force of Tomorrow

- Validity assumes future programs like past programs
 - Programs must "fit" into one of the program categories
 - More programs needed to fill out categories

Applicability limited by source data

- MDAPs
- AF and Navy
- Post MS-B
- Aviation, Maritime, and Munitions

Requires at least one previous SAR

- Not independent; modifies program estimate
 - Probabilistic indication of where program costs are likely to end up
- Non-transparent

Now What?

The AFIT of Today is the Air Force of Tomorrow

Implementation

- Outside acq chain of command
 - OSD/CAPE
 - DAE/DAB
 - Portfolio Manager

Future Work

- Expand the data set
 - Include more recent data
 - Non-MDAPs
 - Pre MS-B
- Make independent
- Have output value be a distribution

- O&S cost estimates are very poor and improve little
- Cost estimators not the problem
 - Assumption of static APB is the problem
- Patterns exist in estimate accuracy
- Nature of patterns can be characterized
- Embrace Uncertainty!
 - An otherwise "perfect" cost estimate constrained by today's baseline is bound to be wrong tomorrow
 - Decision makers need an estimate that accounts for uncertainty

More Information

The AFIT of Today is the Air Force of Tomorrow

• "A Macro-Stochastic Model for Improving the Accuracy of DoD Life Cycle Cost Estimates"

Journal of Cost Analysis and Parametrics

- "Characterizing the Accuracy of DoD Operating and Support Cost Estimates"
 - Journal of Public Procurement
- "A Proposed Methodology to Characterize the Accuracy of Life Cycle Cost Estimates for DoD Programs"
 - Procedia Computer Science

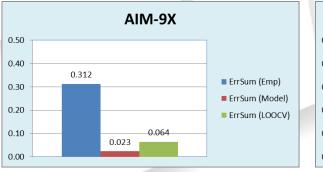
BACKUPS

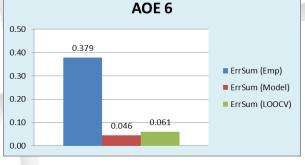
Independent Variables

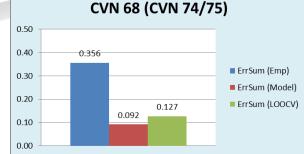
The AFIT of Today is the Air Force of Tomorrow

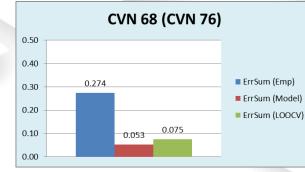
Program Year	DoD Component	Joint		
System Type	Acquisition Phase	Acquisition Type		
Maturity	APB Changes	Funding Years		
Prime Contractor	Acquisition Cost Estimate	AUC Estimate		
O&S Cost Estimate	LCC Estimate	% Expended		
PAUC	APUC	Cost Variance, Total		
Cost Variance, Engr	Cost Variance, Est	Cots Variance, Quan		
Cost Breaches	Tech. Perf. Breaches	Schedule Breaches		
Unit Cost Breaches	Nunn-McCurdy Breaches	Procurement Quantity		
CDR	PDR	MSII		
LRIP	MSIII	IOC		
New Reqmnts	Deleted Reqmnts	Reqmnt Changes		

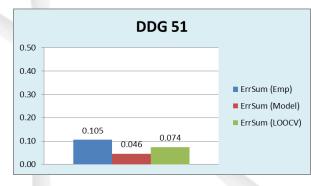
l	PCat	DoD Comp	System Type	Size (Mean Acq Cost Est, BY10)	SARs	# of Programs	Assigned Programs
	1	AF	Aviation	Small (≤ \$18.0B)	58	5	C-130J, GLOBAL HAWK, KC-135A, JPATS, JSTARS
	2	Navy	Aviation	Small (≤ \$18.0B)	68	6	AV-8B, C/MH-53E, E-2C, MH-60R, MH-60S, T-45TS
ſ	3	Both	Aviation	Large (>\$18.0B)	83	6	C-17A, F-16C/D, F-22, F-14D, F/A-18C, F/A-18E/F
	4	Navy	Maritime	Small (≤ \$8.5B)	52	8	AOE 6, CVN68 (74/75), CVN68 (76), MHC 51, SSGN, STRAT. SEALIFT, T-AKE, T-AO 187
	5	Navy	Maritime	Medium (\$8.5B - \$30.0B)	42	3	LHD 1, LPD 17, SSN 21
	6	Navy	Maritime	Large (>\$30.0B)	36	2	DDG 51, SSN 774
	7	Both	Munition	All	53	5	AIM-9X, AMRAAM-AF, AMRAAM-JT, JASSM, JSOW
				TOTALS	392	35	

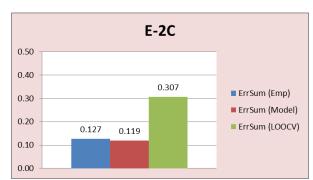


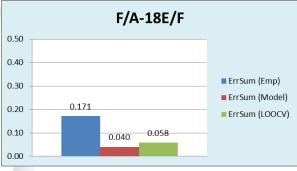


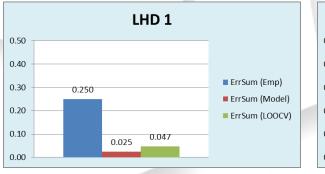

PCat	DoD Comp	System Type	Size (Mean Acq Cost Est, BY10)	SARs	# of Programs	Assigned Programs
1	AF	Aviation	Small (≤ \$18.0B)	33	4	C-130J, JPATS, JSTARS, PREDATOR
2	Navy	Aviation	Small (≤ \$18.0B)	53	5	C/MH-53E, E-2C, MH-60R, MH-60S, T-45TS
3	Both	Aviation	Large (> \$18.0B)	60	5	C-17A, F-16C/D, F-22, F-14D, F/A-18E/F
4	Navy	Maritime	Small (≤ \$8.5B)	41	7	AOE 6, CVN68 (74/75), CVN68 (76), MHC 51, SSGN, T-AKE, T-AO 187
5	Navy	Maritime	Medium (\$8.5B – \$30.0B)	42	3	LHD 1, LPD 17, SSN 21
6	Navy	Maritime	Large (>\$30.0B)	36	2	DDG 51, SSN 774
7	Both	Munition	All	52	5	AIM-9X, AMRAAM-AF, AMRAAM-JT, JASSM, JSOW
			TOTALS	317	31	

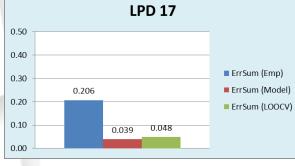

The AFIT of Today is the Air Force of Tomorrow

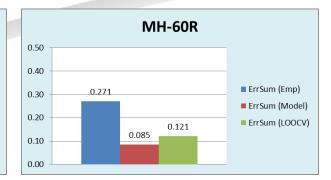


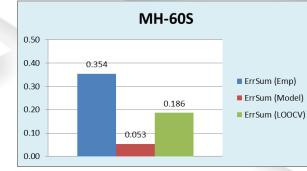


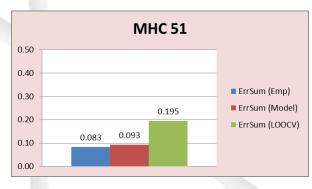

AIR FORCE INSTITUTE OF TECHNOLOG

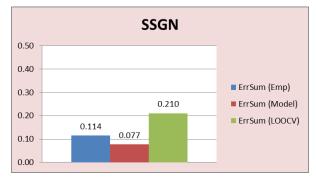


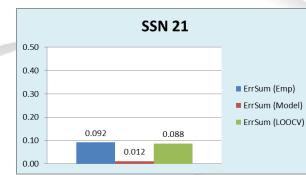




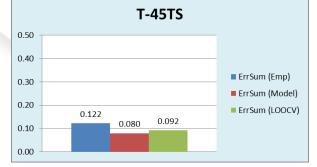

The AFIT of Today is the Air Force of Tomorrow



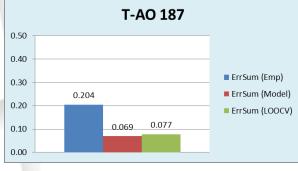


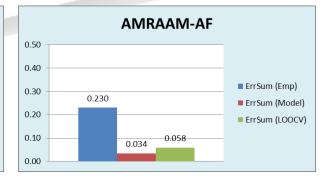


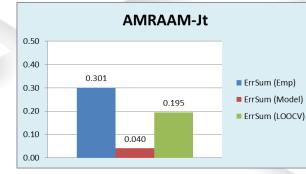
AIR FORCE INSTITUTE OF TECHNOLOG



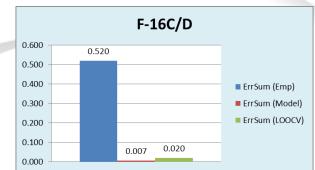


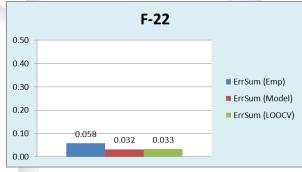


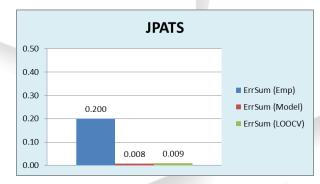


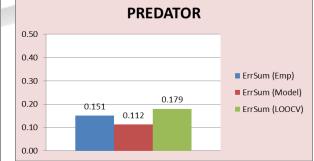


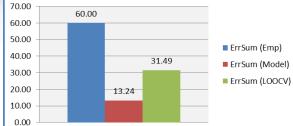
The AFIT of Today is the Air Force of Tomorrow

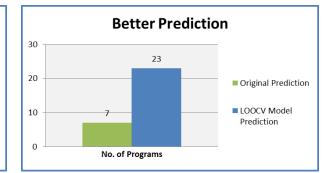









The AFIT of Today is the Air Force of Tomorrow



Sum of All Errors

O.250 O.210 Errsum (Emp) 0.150 0.110 Errsum (Model) 0.100 0.046 Errsum (LOOCV)

Mixed Models

The AFIT of Today is the Air Force of Tomorrow

Mixed models compensate for correlated errors

- Can account for subject observations not independent
- Allow data to exhibit inherent correlations and non-constant variability that arise from the data hierarchy
- Some regression parameters are population-specific (fixed-effects)
- Other parameters are subject-specific (random-effects)

$$y = X\beta + Z\gamma + \varepsilon$$

- y =Observed data vector
- X = Fixed-Effect Design Matrix
- β = Vector of Fixed-Effect Parameter Estimates (same for all subjects)
- Z = Random-Effect Design Matrix
- γ = Vector of Random-Effect Parameter Estimates (varies by subject)
- ϵ = Vector of Residual Errors