The Evolution of a Science Project: A Preliminary System Dynamics Model of a Recurring Software-Intensive Acquisition Behavior

William E. Novak
Andrew P. Moore
Julie B. Cohen
Jay D. Marchetti

October 25, 2012
Copyright 2012 Carnegie Mellon University
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013 and 252.227-7013 Alternate I.

Internal use: * Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use: * This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.
The Evolution of a Science Project

Agenda

Misaligned Incentives

The Evolution of a Science Project

Findings

Interactive Learning Games

Lessons and Summary
Misaligned Incentives

“Incentives are misaligned—PMs and contractors are not necessarily rewarded for decisions that lead to lower life cycle costs or provide a better balance between cost and performance”

—Defense Acquisition Performance Assessment, GEN Ronald Kadish (Ret.)
The Evolution of a Science Project

The Problem

Poor acquisition program performance inhibits military performance by depriving the warfighter of critical systems to achieve mission objectives
 • Delayed systems withhold needed capabilities
 • Wasted resources drain funding needed for new systems

Acquisitions fail for both technical and non-technical reasons; people issues drive adverse acquisition dynamics
 • Human, organizational, and management issues are primary drivers of cost and schedule overruns

Acquisition programs are complex systems with structural dynamics
 • Feedback in acquisition produces non-linear interactions that add complexity
 • Complex systems can produce seemingly unpredictable behaviors

Misaligned incentives are a key driver of poor acquisition outcomes
 • Misaligned incentives occur frequently in software-reliant acquisition programs
Firefighting: If design problems are found in the current release, more resources must be used to fix them. This reduces problems, but now less work is done on the next release. This undermines its early development work, and increases design problems in the next release.
The Evolution of a Science Project

Misaligned Incentives in Software Acquisition

Immature Technology
• Government prefers providing greatest capability, which requires latest technologies
• Contractors prefer using latest technologies to boost staff competency for future bids

Risk Management Participation
• Management may not welcome bad news, viewing it as the reporter’s fault
• Developers have incentive not to report risks, placing personal interest ahead of program

Shared Infrastructure Development
• Programs have an incentive to wait for another program to use the shared infrastructure first—better that they work out the bugs, than risk failure of your program

Joint Programs
• To meet conflicting requirements, cost, schedule, size, complexity, and risk all go up
• Users prefer custom solutions they control that are certain to meet their needs

Take-away
Misaligned incentives are ubiquitous throughout acquisition
Evolution of a Science Project

“What they did at first was a proof of concept, a quick and dirty prototype, and when they tried to scale it up, there were indications that it might not be possible…”

— Acquisition Program Lead
The Evolution of a “Science Project”

1. Project begins as small informal effort to build prototype & prove concept.

2. Prototype is deployed on small scale, and is well received.

3. Warfighters and field commanders demand more capability, broader deployment, faster response.

4. Project staff is diverted to field support, so development progress slows.

5. As system grows, poor architecture, documentation, & code quality cause poor reliability, performance, & usability.

6. Project infrastructure, processes, & staff not able to scale up to production development.

7. New program office unwilling to discard prototype code due to field deployment pressures.

8. New versions of the system can’t be deployed with needed capability, robustness, and performance.

9. Warfighters wait years for a new system to be built from scratch.

This scenario aggregates five SEI software-reliant system acquisition ITAs conducted in 2006-2009.
The Evolution of a Science Project

The Evolution of a “Science Project”

• Behavior has been recognized in many different programs
 • Acquisition executives have seen this dynamic play out in their portfolios
• Model was developed using VenSim system dynamics modeling package
• Planning interactive classroom exercise based on ‘Science Project’ model
 • “The hands-on learning model will be incredibly helpful to the DoD program offices” (SEI Technology Forum attendee)
The Evolution of a Science Project

The Evolution of a “Science Project”

Science Project (SP) Sector

- discovered quality issues (SP)
 - staffing of rework
 - +
 - schedule pressure (SP)
 - features developed
 - staff of development work
 - +
 - Schedule and Feature-Driven Development

- undiscovered quality issues
 - rigor of QA processes
 - +
 - SP fixing quality issues
 - -

Production Development (PD) Sector

- discovery of prototype quality issues
 - decision to reuse prototype
 - -
 - rework to do
 - +
 - scheduled completion date (SP)
 - +
 - initial development work to do
 - +
 - -
 - QA work to do
 - +
 - remaining work to do
 - +
 - released work
 - +
 - +

- injection of quality issues
 - +
 - schedule pressure (PD)
 - +
 - scheduled completion date (PD)
 - -
Findings
Undiscovered rework drives out the scheduled completion date

PD Scheduled Completion Date (Applying Pressure to Workers)
The Evolution of a Science Project

Key Preliminary Findings

Placing modest pressure on developers for limited periods shortens schedule

- VenSim optimization shows that placing pressure at a low level is optimal with respect to reducing project duration
- Possibly by allowing periods of pressure, followed by periods of relaxation, the program might:
 - Limit worker burnout
 - Perform even better regarding schedule
The Evolution of a Science Project

Key Preliminary Findings

There is a critical \textit{tipping point} in the “Evolution of a ‘Science Project’” dynamic

- “Firefighting” due to rework is a key underlying element
- Accumulating rework creates a dangerous feedback dynamic
- Key drivers in reaching the “tipping point” are:
 a) pressure on developers
 b) the degree of “ripple effect”
 c) the emphasis on schedule and features vs. quality
 d) the timing of the transition from science project to production development
High pressure, or moderate pressure for long periods, can reach the “tipping point” in project quality.

PD Discovered Quality Issues (Applying Pressure to Workers)

- **All Pressure Applied (1)**
- **0.8 Pressure Applied (2)**
- **0.6 Pressure Applied (3)**
- **0.4 Pressure Applied (4)**
- **0.2 Pressure Applied (5)**
- **No Pressure Applied (6)**
The Evolution of a Science Project

Key Preliminary Findings

The tipping point contributes to the “90% Done” Syndrome

Percentage Complete (Applying Pressure to Workers)
The transition from science project to production effort must be made *early*

- A late transition increases the amount of undiscovered rework that is transferred

PD Discovered Quality Issues (Scoping the SP Effort)

<table>
<thead>
<tr>
<th>Feature SP Scope</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Feature SP Scope</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>80 Feature SP Scope</td>
<td>2 2 2 2 2 2</td>
</tr>
<tr>
<td>20 Feature SP Scope</td>
<td>3 3 3 3 3 3</td>
</tr>
<tr>
<td>10 Feature SP Scope</td>
<td>4 4 4 4 4 4</td>
</tr>
</tbody>
</table>
The Evolution of a Science Project

Key Preliminary Findings

Throwing away the prototype results in better program performance

- Evolutionary development might show better performance

![Graph showing discovered quality issues and tasks over time]

- Reuse at SP Scope 40 Features
- Decision Not to Reuse
Interactive Learning Games

“Hear and forget;
See and remember;
Do and understand.”

—Chinese proverb
Learning Games for Acquisition

Why Learning Games?

Inexperienced Acquisition Staff

• Acquisition staff often have inadequate experience in decision-making
• Well-intentioned decisions are undermined by adverse side-effects
• Poor acquisition management has major cost, schedule, and quality impacts

Conventional Training is Limited

• Conventional training has been shown to be ineffective in preparing decision-makers for dynamically complex domains

Learning by Doing

• Give acquisition staff a chance to learn how acquisition programs really behave, without risking an actual program

Games and Simulations Teach Better

• [Cordova 1996, Ricci 1996] found that computer games and simulations enhance learning and understanding in complex domains
• “The hands-on learning model will be incredibly helpful to the DoD program offices” —SEI Technology Forum attendee
• [Mayo 2007] found learning doubled for classes with interactive learning vs. only lecture

Take-away

Interactive learning games are a way to better leverage our investment in the acquisition workforce
Learning Games for Acquisition
“Firefighting” Interactive Simulation
Learning Games for Acquisition
“Bow Wave Effect” Interactive Game
Lessons and Summary

“At its very core, this acquisition business is not about contracts, testing, acquisition strategies, plans, technology, finance, oversight, or any of the other things one can learn about or make rules about. It's about people.”

—Terry Little, Missile Defense Agency
The Evolution of a Science Project

Guidance from the “ Evolution” Model

• Focus on using the prototype to demonstrate feasibility and value
 • The prototype should generate interest and promote funding
• Transition early to production development once key concepts are proven
 • The sooner formal development starts, the sooner warfighters will get a system
• Prototype reuse should be conceptual—not code-level
 • Confine reuse to “lessons learned” and feedback for improvement
• All models are wrong—some models are useful
 • No model can accurately model all aspects of the real world
 • Good models produce key insights and raise important questions
• The “I Already Knew That” effect
 • Domain experts may say “I already knew that” about model results
 • It’s easier to point out something as obvious after it’s been explained
The Evolution of a Science Project

Summary

We can build on prior work in static models by developing interactive, executable models of key acquisition dynamics

• Turn existing software acquisition domain expertise into a more usable form

We can use acquisition models to help us better understand known adverse software acquisition dynamics

• Model complex dynamic interactions that we can’t fully comprehend otherwise

Key preliminary findings from “The Evolution of a Science Project”:

• Undiscovered rework drives out the scheduled completion date
• Placing modest pressure on developers for limited periods shortens schedule
• High pressure, or moderate pressure for long periods, can reach the “tipping point”
• The tipping point contributes to the “90% Done” syndrome
• The transition from ‘science project’ to production effort must be made early
• Throwing away the prototype results in better program performance

Interactive classroom games can improve acquisition staff decision-making

• Understand common side-effects of decisions that lead to poor performance
• Let acquisition staff gain experience through education—not costly mistakes
The Evolution of a Science Project

For Additional Information

SEI Report: “Success in Acquisition: Using Archetypes to Beat the Odds”
SEI Blog: “Themes Across Acquisition Programs”: Parts 1-4
Website: http://www.sei.cmu.edu/acquisition/research/archetypes.cfm

Download all twelve:
- PMO vs. Contractor Hostility
- Underbidding the Contract
- Everything for Everybody
- The Bow Wave Effect
- Brooks' Law
- Firefighting
- "Happy Path" Testing
- Longer Begets Bigger
- Shooting the Messenger
- Feeding the Sacred Cow
- Staff Burnout and Turnover
- Robbing Peter to Pay Paul
Joint Program Experience Needed!

We are analyzing the dynamic organizational behavior of joint and joint-interest programs as part of a new research effort.

We are conducting a few group modeling workshops to elicit key joint program behaviors, and are using the information to build a new system dynamics model.

If you’d be interested in participating in this work, please contact:

William E. Novak
Senior Member of Engineering Staff
Military Services Team
Acquisition Support Program
Office: 412.268.5519
Mobile: 412.526.1885
Email: wen@sei.cmu.edu
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890