Systems Tradespace Analysis: Assessment of Current Capabilities and Future Directions

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Elias Rigas and Eric Spero
NDIA 15th Annual Systems Engineering Conference

October 24, 2012

DISTRIBUTION STATEMENT A – Approved for Public Release
Outline

• Background
• What is an ERS Tradespace?
• Tradespace Exploration Workshop
• Workshop Summary Points
• Tradespace Challenges
• Concluding Thoughts and Recommendations
ERS = Engineered Resilient Systems
- Transform system development process
- Effective, affordable, and adaptable systems
- Top 7 OSD S&T Priority for FYs 13-17

Tradespace Analysis Technical Thrust
- A key technology challenge within ERS
- Consider more alternatives, longer, across multiple and dynamic futures
- Current tradespace capabilities fall short

Tradespace Workshop held July 17-18, 2012
- Discuss desired capabilities
- Define gaps to begin prioritizing research
What Is An ERS Tradespace?

• A highly populated, multi-dimensional, combinatorial design space that cannot be visualized in all dimensions at once
 – More alternatives: generated earlier, kept longer, played out across multiple dynamic futures, while accounting for uncertainties

• Inputs and outputs are disparate, incompletely defined, and dependent, with non-linear relationships

• System behaviors are not predictable, and new behaviors emerge as initial conditions change

• Compromises required when trying to satisfy multiple objectives, from multiple stakeholders with independent perspectives

• Insufficiently explored with current practices
• Desired input from tradespace researchers on the challenges of performing tradespace exploration
• Discussed and shared knowledge in tradespace exploration processes, tools, theory, and application
• 40 participants from Academia, Government, Industry
 – Optimization, M&S, data visualization, complex systems, decision making, trade studies
• Held in conjunction with SERC workshop on Tradespace and Affordability; focus was “ilities”.
• Four critical capabilities
 – Broaden, Populate, Manage – Search, Explore, Analyze
 – Link – Act
• 36 research needs identified; 22 deemed near term (1-3 yrs)
Scenario: Tradespace explorers want to communicate interesting trends, features, and design compromises

Problem Statement: Tradespaces are established and explored ad hoc, contain insufficient or incorrect data for the decisions at hand, and are not navigated with intent to inform key decisions

Current Capability: Tradespace exploration performed informally using data that may not be viable for decision making

Desired Capability: Formal tradespace exploration process using data required for common decision types, for the purpose of supporting key decisions across the system lifecycle

Near Term Needs:
- Theories to classify types of decisions made by multiple decision makers across system lifecycle and hierarchy
- Knowledge management infrastructure linking decisions to evidence

Out Year Needs:
- Formal process for performing tradespace exploration
- Guidelines for defining necessary and sufficient tradespace exploration
Scenario: Decision makers draw conclusions using holistic system views and therefore want qualitative data such as risk, resilience, security, policy, and “ilities” in the tradespace

Problem Statement: Non-technical tradespace entries are difficult to articulate, predict, and scale, and therefore are typically suppressed or even ignored

Current Capability: Qualitative metrics are inconsistently assigned arbitrary ordinal rankings

Desired Capability: Early incorporation of qualitative factors in the tradespace, with quantified understanding of their impact on the system

Near Term Needs:
- Standard, formal, composable definitions
- Languages and tools for expressing, analyzing, and evaluating
- Models and relationships that quantitatively determine the impact of “ilities” on each other

Out Year Needs:
- Methods for trading qualitative factors

Tradespace Challenge 2: Include non-quantitative factors and “ilities” in the tradespace

- Reliability: High
- Public Acceptance: Yay
- Policy Compliance: Full
- Resilience
- Reliability
- Risk
- Producibility
- Security
- Safety
- Integrates-ability

Scaled System?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Scenario: Decision makers want real-time, dynamic tradespace engagement while they continually draw conclusions based on knowledge through exploration.

Problem Statement: Static tradespaces do not support changing preferences and inquiries, are repopulated slowly, and do not enable trust via interaction.

Current Capability: Tradespace snapshots presented upon request, inquiries are posed, tradespaces are supplemented, decision makers are summoned.

Desired Capability: A distributed, collaborative, real-time visualization environment that promotes trust through interaction with data.

Near Term Needs:
- Methods for communicating tradespace conclusions based on preferences and “viewing angles”
- Methods for logging search patterns and decisions

Out Year Needs:
- Normative and prescriptive approaches for interpreting, collapsing, and summarizing multi-dimensional spaces.
Scenario: Decision makers want to extend exploration of existing information into asking “what if” questions and then examine alternative futures

Problem Statement: Explosive growth in design and solution space limits the number of systems and operational contexts that can be explored

Current Capability: Scenarios minimally defined and not representative of future operations, real options, computational scenario planning

Desired Capability: Generate and evaluate multiple complex systems across multiple, dynamic life cycle futures, while accounting for emergent behaviors

Near Term Needs:
- Methods for classifying, modeling, propagating, and trading uncertainty
- Tools for rapidly assembling rich operational contexts for multiple stakeholders

Out Year Needs:
- Methods and tools for expressing alternative futures via dynamic and interactive visualization
Scenario: Human decision makers are presented with large, rich tradespaces from which to draw conclusions

Problem Statement: Decision makers do not know where to look, what to look for, when to look, or how to identify important features in a high-dimensional space

Current Capability: Evolutionary optimization algorithms for multi-objective problems in low-dimensional spaces

Desired Capability: Identify abstract and previously unknown objectives and constraints in the tradespace using search and classification algorithms

Near Term Needs:
- Effective and efficient search algorithms that can target selective regions
- Methods to apply optimization and machine learning methods to tradespace search

Out Year Needs:
- Approaches to filter and identify “interesting” areas of large tradespaces
- Mechanisms to guide search based on specified dimensions
Scenario: Decision makers want to progressively draw upon earlier tradespace knowledge during system development

Problem Statement: Later phase design decisions are inconsistent, incompatible, or infeasible with earlier decisions due to lack of retention of exploration sequences, decision rationale, and tradespace knowledge

Current Capability: New tradespace studies conducted with new data in each design phase or loosely linked to previous phases through transfer of personnel

Desired Capability: Persistent tradespace knowledge reused throughout the lifecycle

Near Term Needs:
- Methods for linking decisions: between stakeholders, throughout the lifecycle, and across the system hierarchy
- Empirical/historical based understanding of how decisions made through tradespace exploration have impacted programs

Out Year Needs:
- Methods for evolving the tradespace as information becomes available
Conclusions

• Current tradespace exploration capabilities are insufficient for envisioned ERS tradespace
 – Multiple complex systems across multiple dynamic futures

• Research areas identified that will enable the desired capabilities while addressing problems and challenges

• A tradespace is
 – Functional, perhaps even central to decision making
 – Visual and interactive
 – Dynamic over time
 – More than just a collection of points which each represent a design

• Consider the human aspects
 – Must compellingly communicate tradespace results
 – Social, psychological, and cognitive interaction with data