Engineered Resilient Systems
A Concept of Operations

Robert M. Wallace, Ph.D., P.E. – USACE-ERDC
Lynne Ewartpaine, Ph.D. – NAVSEA
The need for resilient systems

Conventional Warfare

USAF Capability
- High Altitude Aircraft
- Electronic Countermeasures
- Endgame Countermeasures

Adversary Capability
- High Altitude SAM
- Monopulse SAM
- SAM with ECCM

Response loop measured in years

Counter-Insurgency Warfare

US Capability
- Jammers
- Mine Resistant Ambush Protected (MRAP)

Adversary Capability
- Advanced Technology

Response loop measured in months or weeks
Engineered Resilient Systems
Key Technical Thrust Areas

Systems Representation and Modeling
- Capturing physical and logical structures, behavior, interaction with the environment, interoperability with other systems

Characterizing Changing Operational Contexts
- Deeper understanding of warfighter needs, directly gathering operational data, better understanding operational impacts of alternative designs

Cross-Domain Coupling
- Better interchange between “incommensurate” models
- Resolving temporal, multi-scale, multi-physics issues across engineering disciplines

Data-driven Tradespace Exploration and Analysis
- Efficiently generating and evaluating alternative designs, evaluating options in multi-dimensional tradespaces

Collaborative Design and Decision Support
- Enabling well-informed, low-overhead discussion, analysis, and assessment among engineers and decisionmakers
ERS – Integrated Modeling Architecture

- Virtual Test Bed integrates HPC Simulations for environmental conditions and accurate vehicle response, Distributed M&S for Operational Context and Collaborative Virtual Environment for Systems Engineering
 - Provides physics-based simulations for realistic mission evaluation
 - Contextual visualization of HPC results in a mission relevant simulation environment
 - Collaborative acquisition procedure using virtual environment
Warfighter Problem

- Review of existing surveillance capabilities of base
- New requirement to station high-value surface ship
- Solution alternatives are computed in Simulation Space
- Alternatives are evaluate in the Operational Space and Collaborative Space
Trade-space – Permanance

- Alternatives are based upon predecessors and have persistence throughout the lifecycle
Given functional forms for Performance and Cost objectives in terms of Design Parameters Ω and Environmental Parameters Ψ, optimal trade-off curves can be computed for each Option using existing multi-objective optimization techniques. High performance computing and virtual world technology can be used for rapid trade-off curve generation, visualization, and dissemination.
Alternative 1 – Baseline Extended

- Alternative 1 – extending current capabilities
 - Reliance on traditional surveillance via cameras, land-line arrays and armed patrols
 - Trade-space variables of KPP, Manning, and Cost identified
 - Several comments from joint community members and recognition of estimated coverage metrics
 - Note: Alternative 1 built on same 3-D Sim Space as Warfighter Problem
Alternative 2 – New UUV

- Alternative 2 – UUVs used for automated surveillance
 - Many factors discussed including necessary specifications of new UUV, C2 implications, and cost
 - Focus is on cost and schedule of new design
 - Cost considered to high
 - SE suggest extending mission of an existing UUVx

ALTERNATIVE 2
SIMULATION SPACE

KPP: 100%
Man: 2
Cost: $yyM
Alternative 3 – Modified UUV

- Alternative 3 – Extend mission of existing low-cost UUVx
 - Focus is on first-level modeling of UUVx performance (based on KPPs) without modifications
 - Results indicate near KPP performance
 - Warfighter challenges performance estimate due to extreme environmental conditions; requests modeling across env. extremes
Simulated Environmental Factors

- Communities discuss appropriate environmental extremes while Analyst input parameters into existing web-based HPC interface
 - River / Bay currents based on tide and seasonal flooding
 - Salinity (impacting sensor performance and UUV buoyancy)
 - UUV dynamics with range, sensor coverage etc.
UUV operating under simulated environment

- Community reviewing HPC results both in native visualization (web-tool display) and in contextual Simulation Space (VW interface)
 - Identifies vulnerability due to extreme flood conditions
 - Debate to modify UUVx design (e.g., greater range dynamics) vs
 - Reconsideration of Alternative A

ALTERNATIVE 3 w/ UUVx SIMULATION SPACE

MOE: 35%
Man: 2
Cost: $zzM
Design Evolution

- Further pan to show previous simulation space was just one in a 3-D evolution of problem to alternative analysis representations
- Indicate simulation space is persistent and can be provided as part of an RFP Industry Day package for Milestone B.