

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Evens Jean (CTR) Computational Scientist U.S. Army Research Laboratory 07 NOV 2012

Outline

- Introduction
- Motivation
- Challenges & Related Work
- Recent Achievements in Ray-Tracing
- Conclusion & Future Works

Introduction

Virtual Environment for MANET Hardware and Software Testing and Evaluation

Develop a set of real time RF propagation path loss applications using GPGPUs that can be used for MANET simulation, emulation and experimentation

Off-line RF Path Loss Computations are not realistic due to:

- Real-time constraints
- Unpredictability of events in the environment

Hi-Fidelity RF path loss modeling in urban environments

MANET (Mobile Ad-hoc NETwork) emulation integrated with real-time RF propagation computations

Support for 100's to 1000's of emulated radios

Introduction

Virtual Environment for McANET Hardware and Software Testing and Evaluation

Develop a set of real time RF propagation path loss applications using GPGPUs that can be used for MANET simulation, emulation and experimentation

GPGPU (General Purpose Graphical Processing Unit) versions of multiple path loss algorithms

1- ITM (Irregular Terrain Model or Longley-Rice)

2- TLM (Transmission Line Matrix)

3- Ray Tracing

Real-Time results injected into MANET Emulation

Motivation

Troop Deployments

Placing radios in the hands of individual soldiers creates a complex physical environment

External Sources of Interference include:

Jamming equipment

Channel contention from other soldiers

Interference from other sources including sensors, civilian communications

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Motivation

Troop Deployments

Large Scale modeling and Simulation requires an accurate representation of the frequency spectrum usage

Emulations of Battalion (300 – 1300 soldiers) or larger unit sizes will include 1000s of radios

Unit	No. Soldiers
Fireteam	4
Squad	8-13
Platoon	26-55
Company	80-225
Battalion	300-1,300
Brigade	3,000-5,000
Division	10,000-15,000
Corps	20,000-45,000
Field Army	80,000-200,000

Challenges & Related Work

Traditionally it has been impractical to accurately compute path loss in real time

Mobility must be known a priori to allow for pre-computation of path loss tables

Very large numbers of dedicated CPU cores were required to proved a sufficient FLOP rate

Real time path loss calculations generally limited to free-space models

Digital Terrain and Building data Availability and Fidelity

Challenges & Related Work

Traditionally it has been impractical to compute path loss in real time with accuracy

Non-GPGPU

- V. Sridhara (2007) MODELS AND METHODOLOGIES FOR REALISTIC PROPAGATION SIMULATION FOR URBAN MESH NETWORKS, (Ph.D.), University of Delaware
- Many other historical CPU-based solvers for Longley-Rice, TLM, and Ray-Tracing
- GPGPU
 - S. Bai (MITRE) and D.M. Nicol (U. of III. Urbana-Champaign) GPU Coprocessing for Wireless Network Simulation, 2011 Symposium on Application Accelerators in High Performance Computing (SAAHPC'11), July 19-21, 2011
 - A.N. Cadavid (Icesi University) and D.G. Ibarra (Universidad Pontificia Bolivariana, Colombia) Using Game Engines in Ray Tracing Physics, 2010 IEEE Latin American Conference on Communications
 - Efforts focused on mobile networks (i.e. cell phones, not ad-hoc)

2D Vs 3D representation of environment

Real-Time Path Loss computation

How then, Can we efficiently model RF Signal Attenuation?

Challenges & Related Work

Henry L. Bertoni. *Radio Propagation for Modern Wireless Systems*. Prentice Hall Professional Technical Reference, 1999.

Use ray-tracing to compute RF path loss and report back to MANET simulation/emulation

Compare these results directly with measured signal strength

Generate or obtain 3D digitized model of urban environment

Compute or collect real time radio mobility

Illustration of the SBR method. Henry L. Bertoni. *Radio Propagation for Modern Wireless Systems*. Prentice Hall Professional Technical Reference, 1999.

Challenges & Related Work

Data parallel approach use ray tracing to compute Line of Sight (LOS)

- No Reflection/Diffraction

- Urban Environment

Processor	Execution Time (sec)
Simple CPU	323
Quadtree CPU (recursive)	38
Quadtree CPU (stack)	34
Radeon HD 4870 GPU	3.4

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Timeline

Pre 2010	2011	2012 and Beyond
Free Space - Simple calculation on CPU		
 Does not require digital terrain data Does not consider terrain Inaccurate if ground is not flat 	ITM (Longley-Rice) - Efficient GPGPU implementation (>10x faster than single core) - Considers terrain - Does not consider human made structures	
		Ray-Tracing
		 Perceived efficiency on GPGPUs Capable of accurately predicting propagation in
		urban environment
	TLM	Requires 3-D model of environment
	 Very efficient GPGPU computation (60x faster than single core) Typically used for pico-cell 	⁻ Computationally expensive
	modeling 3 - Scale as O(n) with spatial discretization	

ITM: Verification / Validation

ITM Implementation is based upon the open-source distribution available from the Department of Commerce

- http://flattop.its.bldrdoc.gov/itm.html

ITM results are valid for 20MHz to 20GHz

- JTRS was originally planned to use frequencies from 2MHz to 2GHz
- Specific waveforms of interest primarily fall within this range

Current Development uses OpenCL for future portability

- Targets AMD/ATI CPU/GPU, NVIDIA GPU, and Intel CPU

- NVIDIA C2070 capable of computing >65K Point-to-Point calculations per ½ seconds or > 130K per seconds Tx coordinate -111.2201, 39.6901

TLM (Transmission Line Matrix)

The TLM method has much higher fidelity than ITM May include structures and building interiors e.g. Urban environments

TLM is based on the finite difference method

FDTD is a direct solution to Maxwell's Eqs., TLM is an approximation

FDTD requires ~10 points per wavelength (fullwave), TLM does not

TLM simulation models propagation of energy through space (the grid)

Very efficient on GPGPUs (General Purpose Graphical Processing Units)

Memory accesses are local in 3-D

Calculations are basically MADDs (Multiply Adds)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ray-Tracing

For our quest, GPGPU devices are

- cost effective
- power efficient and
- improve space utilization

Use of OpenCL for portability

Execution Threads

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ray-Tracing

3D Environment is represented as a set of polygons

Generated offline

Used to Initialize planes

Reducing the number of polygons consulted yields reduced computation time

Using Spherical Partitions

Preliminary results show a 23% reduction in number of polygons consulted

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ray-Tracing

Each GPU core traces one ray across the 3D environment

Support for parameterized number of reflections and diffractions

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Ray-Tracing

Path Loss due to reflection has been computed Assuming Vertical Polarization of the antennas

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

OCUSED.

Ray-Tracing

OCUSED.

Conclusion & Future Works

Accounting for Knife-Edge Diffraction and associated path loss

Modularity: Integrate CERDEC antenna characteristics

Reflective Path Loss needs to account for the following Antenna polarizations:

Horizontal Circular Elliptical Support for physical properties of materials Increased fidelity of RF computation

Conclusion & Future Works

Study System Performance and Fidelity of results as implemented on GPGPU

Improve and further study the spherical partitions

Minimize number of polygons consulted per ray

Large Scale modeling of JTRS waveforms

MANET simulation using EMANE

Study interference patterns of RF Signals

Thank You!!

9/19/12

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.