SoftWare for the Optimization of Radiation Detectors (SWORD)

Chul Gwon, Bernard Phlips, Mark Strickman
Naval Research Laboratory
Lori Jackson
Praxis, Inc.
Byron Leas
SRA

Physics-Based Modeling in Design & Development for U.S. Defense Conference
Outline

• Introduction to SWORD
 – Motivation
 – User Interface
 – Standard Library
 – Analysis tools

• SWORD Extensions in Progress
 – MCNPX/6 Adapters
 – ADVANTG Adapters
 – Conversion of GIS data into SWORD
 – Radiography tools
 – Backtrace (GEANT4)

• SWORD in Operational Use

• Conclusions
SWORD Motivation

- Simulation allows evaluating and optimizing performance before devoting resources to creating an instrument
- Typically, simulation has been an exercise for the expert user
- SWORD attempts to bring the power of simulation to everyday users
SWORD Motivation

• What it looks like in GEANT4 ...

```cpp
G4VPhysicalVolume const* pCurrentVolume = pTrack->GetVolume();
G4String currentVolumeName = pCurrentVolume->GetName();
TVolumeId currentVolumeId = gVolumeRepository->getVolumeId( convertFromString< size_t >( currentVolumeName ) );

track.setVolumeName( currentVolumeId.getName() );

const G4StepPoint* g4PreStepPoint = stepData->GetPreStepPoint();
const G4ThreeVector g4PreStepPos = g4PreStepPoint->GetPosition();
TPoint preStepPoint( g4PreStepPos.getX() / cm, g4PreStepPos.getY() / cm, g4PreStepPos.getZ() / cm );
preStepPoint.setEnergy( g4PreStepPoint->GetKineticEnergy() / keV );
preStepPoint.setTime( g4PreStepPoint->GetGlobalTime() / s );
track.setPreStepPoint( preStepPoint );

const G4StepPoint* g4PostStepPoint = stepData->GetPostStepPoint();
const G4ThreeVector g4PostStepPos = g4PostStepPoint->GetPosition();
TPoint postStepPoint( g4PostStepPos.getX() / cm, g4PostStepPos.getY() / cm, g4PostStepPos.getZ() / cm );
postStepPoint.setEnergy( g4PostStepPoint->GetKineticEnergy() / keV );
postStepPoint.setTime( g4PostStepPoint->GetGlobalTime() / s );
track.setPostStepPoint( postStepPoint );

uint64_t eventNumber = runManager.GetCurrentEventNumber();
if( gDetectorRepository.isDetector( currentVolumeId ) ) {
    gEventRepository.saveEvent( eventNumber );
}

if( gEventRepository.loggingSupportedParticlesOnly() ) {
    if( gParticleNames.isSupported( particleName ) ) {
        if( gDetectorRepository.loggingDetectorHitsOnly() ) {
            if( gDetectorRepository.isDetector( currentVolumeId ) ) {
                gEventRepository.addTrack( eventNumber, track );
            } else {
                G4VPhysicalVolume const* pNextVolume = pTrack->GetNextVolume();
                if( pNextVolume != 0 ) {
                    G4String nextVolumeName = pNextVolume->GetName();
                    TVolumeId nextVolumeId = gVolumeRepository->getVolumeId( convertFromString< size_t >( nextVolumeName ) );
                    if( gDetectorRepository.isDetector( nextVolumeId ) ) {
                        gEventRepository.addTrack( eventNumber, track );
                    }
                }
            }
        }
    }
}
```
SWORD Motivation

• What it looks like in MCNPX/6 …
SWORD Motivation

- What it looks like to the new users …
SWORD Motivation

• What you’d really like is …
SWORD User Interface

- Graphically set up geometries, sources, detectors
 - Main and Orthogonal Views
 - Wireframe and Solid Rendering
 - Eight primitive shapes
- User can define new materials not included with SWORD
- Add motion to objects
Multiple MC Engines

SWORD

MCNPX

GEANT4
SWORD Standard Library

- Extensive standard library of objects for use in simulations
 - Detectors (neutron, gamma)
 - Vehicles (Land, Sea, Air)
 - Containers
 - Rail cars
 - Environmental Objects
 - Spectra
 - Threat objects
 - NORM backgrounds
 - Medical isotopes
- SWORD library is expandable
 - Objects can be imported into various projects
 - Spectra from sources or backgrounds of interest can be added
SWORD Standard Library
Commercial Detectors

• Several COTS detectors
 – 3”, 6”, 4x2x16, 4x4x16 NaI
 – HPGe PopTop
 – identiFinder
 – GR-135+
 – RadPack
 – Plastic Scintillator
 – 2” CLYC
SWORD Standard Library

Specialized Detectors

- MISTI
- SuperMISTI
- MARS
SWORD Standard Library
Land Vehicles

- Tour Bus
- Tractor Trailer
- Pickup Truck
- Compact Car
- Minivan
SWORD Standard Library

Ships

- Chalmers, Titus, Avatar
- Atlas, Diane-G, Stiletto, Yacht
- Guardian, Pacific Venture, RHIB
SWORD Standard Library
Helicopters

- Firescout UAV
- Eurocopter AS350 Ecureuil
- Blackhawk UH-60
- Bell 412
SWORD Standard Library
Aircraft

- Bell Boeing V-22 Osprey
- NASA ER-2
- Cessna Skycatcher
• Locomotive
• Box Car
• Well Car
• Gondola
• Tanker
SWORD Standard Library

Neighborhood

- Created entire neighborhoods
 - Townhouses
 - Strip Mall
 - Stand alone homes
Library of Background Sources

- Background simulation crucial for simulating instrument performance
- SWORD provides background spectra including
 - Concrete
 - Fresh water
 - Salt water
 - Common cargo found in shipping containers:
 - Fertilizer, limestone, cat litter, brazil nuts
- Developed mechanism for rapid deconvolution of new concrete spectrum given a measured spectrum

Figure: Simulated spectrum (magenta) vs. detected spectrum using HPGe (blue)
SWORD Analysis

- Spectrum produced in ANSI 42.42 format
- Spectra displayed with and without detector response
SWORD Analysis

- SpectrumAnalyzer
 - Analyzes spectra from SWORD (or data in .spe or N42.42 format)
 - Line fitting using MPFIT
 - Isotopic line identification
SWORD Analysis

- Images produced in NASA FITS format
- Limited imaging performance analysis
- Can also use standard FITS tools such as SAOImage/DS9 or FV
Outline

• Introduction to SWORD
 – Motivation
 – User Interface
 – Standard Library
 – Analysis tools

• SWORD Extensions in Progress
 – MCNPX/6 Adapters
 – ADVANTG Adapters
 – Conversion of GIS data into SWORD
 – Radiography tools
 – Backtrace (GEANT4)

• SWORD in Operational Use

• Conclusions
MCNPX/6 Adapters

- Improve integration with MCNPX/6
 - Tallies applied to surfaces (F1, F2) or volumes (F4, F6, F8) for any defined detector
 - Tree-view displays user-defined tallies
 - Energy, Time, Cosine ranges and particle type may be defined
- Results viewable using SWORD analysis tools
- Working on mesh tallies, auto-funneling of tallies and “physics wizard”
ADVANTG

- **AutomateD VAriaNce reducTion Generator (ADVANTG)**
 - Developed at ORNL
 - Automatically generated weight-window map for use in MCNP

- Uses ORNL deterministic code (Denovo) to generate weight-windows
 - Can also be used as front end to simulate scenarios deterministically
Simulating Cities

- NRL has developed capabilities to ingest the GIS database of entire cities for use in simulation
 - Building, Elevation, Water, and Trees
Railroad Radiography

- Simulate radiography with SWORD
- Uses built-in moving objects capability
- Extensive CPU resources may required

Simulated radiographic image
Backtrace

- Backtrace shows the tracks where an interaction occurred in a defined detector
 - Includes energy, particle species, and time information
 - Currently only works with GEANT4
- Example with neutron source
 - 1e6 neutrons fired isotropically from a point source
 - Detector array in a container, on a truck
 - Top Right: cyan tracks show the neutrons that interacted in the detector
 - Bottom Right: green tracks show secondary photons that interact in the detector
Outline

• Introduction to SWORD
 – Motivation
 – User Interface
 – Standard Library
 – Analysis tools

• SWORD Extensions in Progress
 – MCNPX/6 Adapters
 – ADVANTG Adapters
 – Conversion of GIS data into SWORD
 – Radiography tools
 – Backtrace (GEANT4)

• SWORD in Operational Use

• Conclusions
Detection in Urban Environment

- Seattle buildings created with GIS data
- Source placed in one of the buildings
Detection on Sea Simulation

• Vessel with large area detector
 – 100%-efficient HPGe detectors
 – 6” NaI detectors
 – Moving at 6 knots

• Yacht with source
 – Shielded SNM
 – Moving at 5 knot
Conclusions

• NRL developed SWORD to bring the power of simulation to the non-expert user
• Ease of use along with standard library allows for efficient setup and simulation
• Continually developing SWORD
 – Adding new functionality (suggestions welcome)
 – Improving interface to MC engines
 – Adding interfaces to new engines
• Developing user base (~100 users)

This project is funded in part by the Domestic Nuclear Detection Office of the Department of Homeland Security. This support does not constitute an express or implied endorsement on the part of the Government.