

SoftWare for the Optimization of Radiation Detectors (SWORD)

Chul Gwon, Bernard Phlips, Mark Strickman Naval Research Laboratory Lori Jackson Praxis, Inc. Byron Leas SRA

Physics-Based Modeling in Design & Development for U.S. Defense Conference

Outline

- Introduction to SWORD
 - Motivation
 - User Interface
 - Standard Library
 - Analysis tools
- SWORD Extensions in Progress
 - MCNPX/6 Adapters
 - ADVANTG Adapters
 - Conversion of GIS data into SWORD
 - Radiography tools
 - Backtrace (GEANT4)
- SWORD in Operational Use
- Conclusions

- Simulation allows evaluating and optimizing performance before devoting resources to creating an instrument
- Typically, simulation has been an exercise for the expert user
- SWORD attempts to bring the power of simulation to everyday users

• What it looks like in GEANT4 ...

```
particleName );
```

```
G4VPhysicalVolume const* pCurrentVolume = pTrack->GetVolume();
G4String currentVolumeName = pCumrentVolume->GetName();
TVolumeId currentVolumeId = gVolumeRepository->getVolumeId( convertFromString< size_t >( currentVolumeName ) );
```

```
track.setVolumeName( currentVolumeId.getName() );
```

```
const G4StepPoint* g4PreStepPoint = stepData->GetPreStepPoint();
const G4ThreeVector g4PreStepPos = g4PreStepPoint->GetPosition();
TPoint preStepPoint( q4PreStepPos.qetX()/cm, q4PreStepPos.qetY()/cm, q4PreStepPos.qetZ()/cm );
preStepPoint.setEnergy( g4PreStepPoint->GetKineticEnergy() / keV );
preStepPoint.setTime( g4PreStepPoint->GetGlobalTime()/s );
track.setPreStepPoint( preStepPoint );
const G4StepPoint* q4PostStepPoint = stepData->GetPostStepPoint();
const G4ThreeVector g4PostStepPos = g4PostStepPoint->GetPosition();
TPoint postStepPoint( q4PostStepPos.getX()/cm, q4PostStepPos.getY()/cm, q4PostStepPos.getZ()/cm );
postStepPoint.setEnerqy( q4PostStepPoint->GetKineticEnerqy() / ke♥ );
postStepPoint.setTime( q4PostStepPoint->GetGlobalTime()/s );
track.setPostStepPoint( postStepPoint );
uint64 t eventNumber = runManager.getCurrentEventNumber();
if ( qDetectorRepository.isDetector( currentVolumeId ) ) {
    qEventRepository.saveEvent( eventNumber );
-}
if( gEventRepository.loggingSupportedParticlesOnly() ) {
    if ( qParticleNames.isSupported( particleName ) ) {
        if ( gEventRepository, loggingDetectorHitsOnly() ) {
            if( gDetectorRepository.isDetector( currentVolumeId ) ) {
                qEventRepository.addTrack( eventNumber, track );
            } else {
                G4VPhysicalVolume const* pNextVolume = pTrack->GetNextVolume();
                if ( pNextVolume != 0 ) {
                    G4String nextVolumeName = pCurrentVolume->GetName();
                    TVolumeId nextVolumeId = gVolumeRepository->getVolumeId( convertFromString< size_t >( nextVolumeName ) );
                    if( qDetectorRepository.isDetector( nextVolumeId ) ) {
                        gEventRepository.addTrack( eventNumber, track );
```


• What it looks like in MCNPX/6 ...

254	5		<u>.</u>	010	1111 . 19 ⁻ 1	
261 0	260 5 262	256 257 258 259 IMP:N=1 -0.00129 -261 263 264 265 266				
268	269					
275	274 5 276	IMP:N=1 -0.00129 -275 277 278 279 280				
282	281 5 283	IMP:N=1 -0.00129 -282 284 285 286 287				
253 336	288 5 337	IMP:N=1 -0.00129 -253 -0.00129 -336 338 339 340 341	254	261	268 275 282	IMP:N=1
343	342 5 344	IMP:N=1 -0.00129 -343 345 346 347 348				
321	349 5 322	IMP:N=1 -0.00129 -321 323 324 325 326				
328	327 5 329 334	IMP:N=1 -0.00129 -328 330 331 332 333 IMP:N=1				
320 335 289	334 5 5 2!	-0.00129 -320 -0.00129 -335	321 336 IMP	343	IMP:N=1 IMP:N=1	
290 291 291	29 29 20	9 -0.9 -290 9 -0.9 -291	IMP IMP TMP	: N=1 : N=1		

90	BOX -401.295 69.7513999999999 105.2
	69.63 0 0 0 181.1536 0
91	0 0 0.1 BOX -401.295 116 105.2
	69.6300 040 000.1
98	B0X -401.295 116 -105.3 69.63 0 0
	09.0300 040 000.1
92	WED -331.665 116 105.2
	0 - 2 0 0 0 0.1
99	WED -331.665 116 -105.3 -69.63 0 0
	0 - 2 0 0 0 0.1
93	B0X -401.295 122 105.2 69.63 0 0
	0 4 0 0 0 0.1
100	BOX -401.295 122 -105.3 69.63 0 0
	040 000.1
94	WED -331.665 126 105.3 -69.63 0 0
	0 2 0 0 0 -0.1
101	WED -331.665 126 -105.2 -69.63.0.0

25000 0.017097 26000 0.69624 28000 0.092256 6000 0.0013801 m9 1000 0.65714
6000 0.34286
m27 1000 0.0209
13000 0.59362 14000 0.12039
29000 0.25203
6000 0.013062
m29 1000 0.46392
13000 0.058168 6000 0.45692
7000 0.0069995
8000 0.013999
m15 13000 0.048808
14000 0.18635 20000 0.092439
5010 0.010509
5011 0.043108
8000 0.61878
MODE p e n h d t s a # PHYS:P 100 0 0 -1 0 0
PHYS:E 100 0 0 0 0 1 1 1 1 0
PHYS:N 100 100 0 -1 i 0 2
CUT:P 2j 0 0 CUT:E 2j 0 0 CUT:E 2j 0 0 CUT:N 2j 0 0 print -85 -86
CUT:E 27 U U CUT:N 25 0 0
print -85 -86
prdmp 2j 1 3
DBCN 28ງ 1

• What it looks like to the new users ...

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
☆╲さん仕え手手もお芋ち手は目の光をえ口目をたらかいのか。

• What you'd really like is ...

SWORD User Interface

- Graphically set up geometries, sources, detectors
 - Main and Orthogonal Views
 - Wireframe and Solid Rendering
 - Eight primitive shapes
- User can define new materials not included with SWORD
- Add motion to objects

Multiple MC Engines

SWORD

MCNPX

06/19/12 11:45:39 Problem generated from SWORD XML files probid = 06/19/12 11:45:22 basis: YZ - 10 1000 (0.000000, 0.000000, 1.000000) (0.000000, 1.000000, 0.000000) origin: 10.000 +.... (0.00, -1.03, 9.62) extent = (41.94, 41.94) +.5.00 1.000 -8.9400 1.000 +.000 Edit cel Cell 7 - 6.0758 0.00, xyz --1.03, 9.62 CURSOR SCALES 0 CellLine -10800 ROTATE PostScript COLOR nat -1.0000 xx YZ zx LABEL off off - 10000 MBODY on LEGEND off 9 Table # 12.0000 Click here or picture or menu ACOTHER WHEE D Redraw Plot> End

GEANT4

SWORD Standard Library

- Extensive standard library of objects for use in simulations
 - Detectors (neutron, gamma)
 - Vehicles (Land, Sea, Air)
 - Containers
 - Rail cars
 - Environmental Objects
 - Spectra
 - Threat objects
 - NORM backgrounds
 - Medical isotopes
- SWORD library is expandable
 - Objects can be imported into various projects
 - Spectra from sources or backgrounds of interest can be added

SWORD Standard Library Commercial Detectors

- Several COTS detectors
 - 3", 6", 4x2x16, 4x4x16 Nal
 - HPGe PopTop
 - identiFinder
 - GR-135+
 - RadPack
 - Plastic Scintillator
 - 2" CLYC

SWORD Standard Library Specialized Detectors

- MISTI
- SuperMISTI
- MARS

SWORD Standard Library Land Vehicles

- Tour Bus
- **Tractor Trailer**

SWORD Standard Library Ships

• Chalmers, Titus, Avatar

• Atlas, Diane-G, Stiletto, Yacht

• Guardian, Pacific Venture, RHIB

SWORD Standard Library Helicopters

- Firescout UAV
- Eurocopter AS350 Ecureuil
- Blackhawk UH-60
- Bell 412

SWORD Standard Library Aircraft

- Bell Boeing V-22 Osprey
- NASA ER-2
- Cessna Skycatcher

SWORD Standard Library Rail

- Locomotive
- Box Car
- Well Car
- Gondola
- Tanker

SWORD Standard Library Neighborhood

- Created entire neighborhoods
 - Townhouses
 - Strip Mall
 - Stand alone homes

Library of Background Sources

- Background simulation crucial for simulating instrument performance
- SWORD provides background spectra including
 - Concrete
 - Fresh water
 - Salt water
 - Common cargo found in shipping containers:
 - Fertilizer, limestone, cat litter, brazil nuts
- Developed mechanism for rapid deconvolution of new concrete spectrum given a measured spectrum

Figure: Simulated spectrum (magenta) vs. detected spectrum using HPGe (blue)

SWORD Analysis

- Spectrum produced in ANSI 42.42 format
- Spectra displayed with and without detector response

SWORD Analysis

- SpectrumAnalyzer
 - Analyzes spectra from SWORD (or data in .spe or N42.42 format)
 - Line fitting using MPFIT
 - Isotopic line identification

SWORD Analysis

- Images produced in NASA FITS format
- Limited imaging performance analysis
- Can also use
 standard FITS tools
 such as
 SAOImage/DS9 or
 FV

Outline

- Introduction to SWORD
 - Motivation
 - User Interface
 - Standard Library
 - Analysis tools
- SWORD Extensions in Progress
 - MCNPX/6 Adapters
 - ADVANTG Adapters
 - Conversion of GIS data into SWORD
 - Radiography tools
 - Backtrace (GEANT4)
- SWORD in Operational Use
- Conclusions

MCNPX/6 Adapters

- Improve integration with MCNPX/6
 - Tallies applied to surfaces (F1, F2) or volumes (F4, F6, F8) for any defined detector
 - Tree-view displays user-defined tallies
 - Energy, Time, Cosine ranges and particle type may be defined
- Results viewable using SWORD analysis tools
- Working on mesh tallies, autofunneling of tallies and "physics wizard"

SWORD Geometry Builder	- d X						
Options							
Load Clear All	Save Save As Quit Builder						
View Controls							
Keyboard Hotkeys	Edit Mouse Controls Drawing Mode						
Translate Zoom Res	et 🔍 Translate 🔾 Zoom						
Left: ← Right: → In: Ctrl Shift + Up: ↑ Down: Out: Ctrl -	Reset: H						
Rotate	🔘 Rotate Left/Right 🔘 Rotate Up/Down						
Left: Ctrl ← Up: Ctrl ↑ CCW:	Ctrl Shift ← ORotate CW/CCW OPoint and Click OSolid						
Right: Ctrl → Down: Ctrl ↓ CW:	Ctrl Shift →						
Screenshot Options							
Hotkev: 'S'							
Editor							
	ensity Mcnpx Tally BackTrace Mesh Layout						
Detector Properties Instrument Add Object Edit Object Copy Object	Source Source Properties Time Steps View Options Move Object Remove Object Add From Std Library Array/Mask						
- MCNPX Tallies							
- MCNPX Talles	ID 1						
	Tally Type F1 💌 neutron 💌						
	Detectors						
	Detector List Selected Detectors						
	Ge-PopTop-Elt 🔻 Ge-PopTop-Elt:+z						
	Surfaces						
	circular side						
	-z +						
	Energy Range (keV)						
	Min nBins Max Log Bins						
	Time Range (s)						
	Min nBins Max Log Bins						
	Cosine Range 24						
	Min nBins Max Log Bins						
Ha Ha X	Add Tally						

ADVANTG

- AutomateD VAriaNce reducTion Generator (ADVANTG)
 - Developed at ORNL
 - Automatically generated weight-window map for use in MCNP
- Uses ORNL deterministic code (Denovo) to generate weight-windows
 - Can also be used as front end to simulate scenarios deterministically

Simulating Cities

- NRL has developed capabilities to ingest the GIS database of entire cities for use in simulation
 - Building, Elevation, Water, and Trees

GIS

SWORD

Railroad Radiography

- Simulate radiography with SWORD
- Uses built-in moving objects capability
- Extensive CPU resources may required

SWORD radiography setup

Simulated radiographic image

Backtrace

- Backtrace shows the tracks where an interaction occurred in a defined detector
 - Includes energy, particle species, and time information
 - Currently only works with GEANT4
- Example with neutron source
 - 1e6 neutrons fired isotropically from a point source
 - Detector array in a container, on a truck
 - Top Right: cyan tracks show the neutrons that interacted in the detector
 - Bottom Right: green tracks show secondary photons that interact in the detector

Outline

- Introduction to SWORD
 - Motivation
 - User Interface
 - Standard Library
 - Analysis tools
- SWORD Extensions in Progress
 - MCNPX/6 Adapters
 - ADVANTG Adapters
 - Conversion of GIS data into SWORD
 - Radiography tools
 - Backtrace (GEANT4)
- SWORD in Operational Use
- Conclusions

Detection in Urban Environment

Detection on Sea Simulation

- Vessel with large area detector
 - 100%-efficient HPGe detectors
 - 6" Nal detectors
 - Moving at 6 knots
- Yacht with source
 - Shielded SNM
 - Moving at 5 knot

Conclusions

- NRL developed SWORD to bring the power of simulation to the non-expert user
- Ease of use along with standard library allows for efficient setup and simulation
- Continually developing SWORD
 - Adding new functionality (suggestions welcome)
 - Improving interface to MC engines
 - Adding interfaces to new engines
- Developing user base (~100 users)

This project is funded in part by the Domestic Nuclear Detection Office of the Department of Homeland Security This support does not constitute an express or implied endorsement on the part of the Government.