HE AIR FORCE RESEARCH LABORATORY

AFRL's ALREST Physics-Based Combustion Stability Program

Dr. Venke Sankaran and Dr. Doug Talley AFRL/RQ

8 November 2012

Air Force Research Lab

Air Force Research Laboratory

- 10 Major R&D sites across US
- 40 Locations around the World
- 10 Technical Directorates
 - Air Vehicles (RB)
 - Propulsion (RZ)
 - Aerospace Systems Directorate (RQ)

- 5,400 Gov't Employees
- 3,800 On-site Contractors

Facilities

Bench-level Labs

Altitude Facilities

• From micro-newtons to 50,000 lbs thrust

High Thrust Facilities

- 19 Liquid Engine stands, up to 8,000,000 lbs thrust
- 13 Solid Rocket Motor pads, up to 10,000,000 lbs thrust

Hydrocarbon Boost

- HCB establishes advanced, modern, domestic LRE Tech Base
 - Required to replace Russian RD-180 on EELV
 - 1st reusable high performance U.S. HC engine
 - Establishes Ox-rich staged combustion (ORSC) <u>tech base</u> for U.S.
 - Help sustain ailing U.S. rocket engine industry tech development base
 - HCB strongly supports SMC/LR American Kerosene Engine project

In-House:

- Building subscale test facility to mitigate combustion devices risk
- Critical combustion research using 219
 funds
- Fuel thermal stability
- Injector design
- Preburner mixing
- Combustion Stability

The WOWs:

- Design, build, test ORSC LOx/Kerosene Liquid Rocket Engine Tech Demonstrator
 - 250K-lbf with high Throttle Capability (SOTA is 2:1) Enables mission flexibility
 - 100 Life Cycle with 50 cycle overhaul (SOTA
 - is 20) Exceeds requirement, provides margin
- ORSC is a higher performing engine resulting in a smaller launch vehicle or an <u>increase in delivered</u> payload

What is a Combustion Instability (CI)?

Damaged F-1 engine injector faceplate caused by combustion instability

 "Combustion instabilities have been observed in almost every engine development effort, including even the most recent development programs"
 JANNAF Stability Panel Draft

- Combustion instability is an <u>organized</u>, <u>oscillatory</u> motion in a combustion chamber <u>sustained by combustion</u>.
- Irreparable damage can occur in <1s.
- Combustion instability caused a four year delay in the development of the F-1 engine used in the Apollo program
 - > 2000 full scale tests
 - > \$400 million for propellants alone (at 2010 prices)
- CI has been identified as a <u>major risk factor</u> in the HCB demo and future engine development.

Capability to model

Challenges

- High pressures
 - Supercritical pressure with cryogenic propellants
 - Challenging to obtain detailed data
- Turbulence and Combustion
 - Unsteady dynamics requires LES or hybrid RANS-LES
 - Detailed mechanisms for chemical kinetics
 - Turbulent combustion closures
- Boundary Conditions
 - Simulations must include fuel and ox manifolds
- Data Processing

Overview of ALREST

(Advanced Liquid Rocket Engine Stability Technology)

OBJECTIVE

 Develop advanced physics-based combustion stability design tools to reduce the risk of developing combustion instabilities in future Air Force liquid rocket engine development programs.

APPROACH

• Fully coordinate with other national efforts to conduct data-centric, multi-fidelity model development.

Data-Centric Model Development

Multi-Fidelity Model Development

- ALREST <u>High Fidelity Modeling is a six year</u> program to develop high fidelity design tools for combustion stability
 - Central strategy is to take advantage of exponentially growing computational capability as our fastest growing enabling tool.
 - Two independent 3-year phases
 - Selection for phase I does not guarantee selection for phase II
- Tools will be validated against HCB data and applied to follow-on engine programs.

Current

End of phase I

Future vision

Distribution A: Approved for Public Release; Distribution Unlimited

=RL

Source code will be delivered and maintained by Hypercomp after the contract ends

AHFM Dev't Team

ALREST Verification Suite

Case No.	Description of Test Case used for Verification
VR-1	Uniform Flows (Run with all available schemes)
VR-1.1	3D Uniform Flow in rotated uniform grid
VR-1.2	3D Uniform Flow in rotated non-uniform grid
VR-1.3	Uniform Flow in a 2-domain uniform grid
VR-2	Simple Scaling Study
VR-2.1	3D Temporal Mixing Layer (TML) with light load
VR-2.2	3D TML with normal load
VR-3	Wave Propagation Accuracy
VR-3.1	Quasi 1D Gaussian pressure pulse traveling in a duct of variable area
VR-3.2	Above with temperature variation
VR-4	Flame Test Cases
VR-4.1	Laminar premixed methane/air flame (phi=1,p=1 to 60 atm, 4-step, 8-
	species, initial solution from GRI)
VR-4.2	Laminar premixed H2/Air flame (phi=0.7)
VR-5	Boundary Condition Test Cases
VR-5.1	Pressure reflection from inflow, non-reflecting exit at outflow
VR-5.2	Above with turbulent inflow
VR-5.3	Above with Calorically (CPG) vs Thermally (TPG) perfect gas models
VR-6	Convection Test Cases
VR-6.1	1D Tests of wave speed with jump in species concentration
VR-6.2	1D Shock tube problem with limiters and artificial dissipation
VR-6.3	1D Gaussian pulse with different flux formulae
VR-6.4	2D convected vortex
VR-6.5	1D Gaussial entropy wave
VR-7	Temporal Mixing Layer
VR-7.1	3D, 1 species Euler CPG mixing layer model
VR-7.2	2D, 2 species CPG model
VR-7.3	Shock Wave Test Cases
VR-7.4	1D Sod shock tube test case
VR-7.5	2D Oblique shock Mach 5, 25 deg wedge
VR-7.6	2D Richtmyer-Meshkov Instability

These are the set of "automated test cases" used to verify code integrity was maintained during code dev't

ALREST Validation Cases

Validation Simulations

Purdue longitudinal validation case

CVRC Longitudinal Instability

Case Description:

- Longitudinal instability for single Injector
- Continuous Variable Resonance Combustor
- Self-Excited Combustion Instabilities
- Gas-gas shear coaxial injector element

Relevance to AHFM:

• Longitudinal Instability for Hydrocarbon Combustion under Supercritical Conditions

Key Metric or Success Criteria:

- Frequency and Amplitude Growth of Fundamental Instability and Higher Harmonic/Secondary Modes
- Mode Shapes and Phase

Pressure Signal

- Good prediction of the peak to peak fluctuations
- Good prediction of trends
- Frequency and amplitude slightly off
 - 200 Hz and x2 • respectively
 - Reason still under • investigation
- $P_0 = 1.55 \text{ Mpa} > 1.55 \text{ Mpa}$ P_{exp}=1.4 MPa

Parametric Studies

- Good prediction of the stability domain:
 - L<9cm and L>16cm: strong reduction of acoustics
 - L>9cm and L<16cm: unstable combustor

Transverse Validation Data

Heat Release

CFD Heat Rate (Watts)

Experiment Video - CH*

Analytical Methods

Gloyer-Taylor Labs' UCDS suite of tools applied to existing liquid rocket engine data.

$$\frac{dR_{m}}{dt} = \alpha_{m}R_{m}; \quad \alpha_{m} = \begin{cases}
\frac{1}{2E_{m}^{2}} \iint_{S_{inj}} M_{inj}(A_{inj}^{(r)}+1)\psi_{m}^{2}dS - \frac{1}{2E_{m}^{2}} \iint_{S_{N}} M_{inj}(A_{N}^{(r)}+1)\psi_{m}^{2}dS \\
+ \frac{1}{2E_{m}^{2}} \iint_{S_{inj}} M_{inj}(B_{inj}^{(r)})\psi_{m}^{2}dS - \frac{1}{2E_{m}^{2}} \iint_{S_{inj}} \left(\frac{\delta}{2\gamma M_{inj}}\right)^{2} (\nabla\psi_{m} \cdot \nabla\psi_{m}) dS \\
- \frac{1}{2E_{m}^{2}} \iint_{S_{inj}} \rho_{0}\mathbf{u}_{0} \cdot \langle \mathbf{u}_{1} \times \omega_{1} \rangle dV - \frac{1}{2E_{m}^{2}} \iint_{V} \rho_{1}\mathbf{u}_{1} \cdot \langle \mathbf{u}_{0} \times \omega_{0} \rangle dV \\
- \frac{1}{2\gamma P_{0}E_{m}^{2}} \iint_{V} \langle \frac{\mathscr{M}_{T}}{T_{0}} - \frac{\mathscr{M}_{0}T_{1}^{2}}{T_{0}^{2}} \rangle dV + \begin{cases}
(Viscous Losses; Energy Dissipation) \\
+ (Heat Transfer) \\
+ (Particle Damping and \\
Other Two - Phase Flow Effects)
\end{cases}$$

Summary

• ALREST

- Nationally coordinated data-centric multi-fidelity model development
- ALREST-HFM is the high-fidelity physics-based platform
- Validated using relevant rocket data
- Results are input into lower-fidelity engineering tools
- Future
 - More sophisticated physics models
 - Improved combustion diagnostics
 - Modular code and model development
 - Reduced-basis model development

