
Use of Plugin Architecture and Full Source
Licensing in the Deployment and Support of the

Conflict Analysis & Simulation Tool (CAST)
John Shue

8 November 2012

Overview

• Plugin Architecture
– What problems are solved by plugin architecture
– How it is accomplished

• Embedded Python
– Key enabler for plugin architecture
– Other benefits of embedding Python

• Full Source Licensing
– End user benefits
– Vendor benefits

2

Context

• The Conflict Analysis & Simulation Tool
(CAST) was developed by ManTech to
provide a MS&A framework to rapidly
simulation and visualize conflict
scenarios for:
– mission effectiveness analysis
– requirements analysis
– trade studies
– technology assessment
– tactics/CONOPS development

• CAST is commercially available, but has
also been employed on support
contracts with Government customers.

• Modularization through a plugin
architecture is required to support a
disparate client base and problem
domains.

3

Framework Description

• The CAST framework provides the core components
which are used to create, run, and analyze
simulations.

• The CAST framework is extended to develop
system models and scenarios specific to the client’s
problem domain.
– DHS DNDO: Radiation Detection
– DoD: Naval Warfare
– International: Air Warfare

4

Customization through Plugin Architecture

Core framework extended and customized by adding features via plugin architecture

5

Problems Solved by Plugin Architecture

• Plugin architecture provides clear separation for
– Security/classification
– Export control
– Source code funding streams
– Intellectual property

• Specific models and scenarios cannot be shared
– These models can exist completely within the plugin

• Deployment is simplified
– End user’s configuraation management can focus on

the plugin-level

6

Variety of Customizations

• Simulation framework must be flexible to support a
variety of customizations to occur at the plugin level
– Graphical User Interface (GUI)
– Visualization
– System models
– Data inputs
– Analysis outputs
– Agent behaviors

7

Aspects of a Plugin Architecture

• Successful plugin architecture requires:
– Flexible architecture

• Object-oriented design
• Composition versus inheritance
• Runtime configuration

– Data driven approach
– Use of open standards

8

Object-oriented Design

• Code organized into a hierarchical structure of
classes

• Data and associated code are grouped together
• Hierarchy of classes supports generalization where

common aspects exist at higher levels and unique
aspects are kept at lower levels

• In object-oriented design, inheritance is a rigid
compile-time constraint that cannot be changed at
runtime

9

Composition versus Inheritance

• To improve flexibility, object composition is a technique
that can be used to specialize objects at runtime.

• This can be thought of as “has a” (composition) versus
“is a” (inheritance).

• The ability to compose behavior or functionality lies in
creating interfaces.

• An example of kinematic motion for entities
– Inheritance would dictate a hierarchy of classes for each

entity with specialized movement algorithms (Vehicle,
Ship, Aircraft, Airplane, Helicopter)

– Composition provides an interface for movement and
encapsulates the movement algorithms into a component
attached to the base entity (Vehicle class with movement
functors)

10

Runtime Configuration

• To provide a flexible runtime architecture, framework
must provide the ability to be configured at runtime.

• Runtime configurability plays nicely with an
embedded scripting language capability (more detail
later)

• Example of selecting system models with different
fidelity
– Object-oriented design with composition allows

different fidelity models to be attached to entities at
runtime, likely driven by data input

11

Data Driven Approach

• Runtime configuration driven by data inputs
– Execution changes based on inputs
– Dynamic selection of runtime components versus

hard-coded or static single-choice execution
• Data driven system modeling

– Algorithm versus data
– Requires algorithms to be selectable and initialized at

runtime
– This approach doesn’t work for all system models, in

which case, design falls back to traditional methods

12

Use of Open Standards

• Use of Extensible Markup Language (XML) for data
– Easy to parse
– Human readable
– Numerous tools exist for data entry and manipulation
– Schema can be developed to enforce data structure

• Use of existing best of breed cross-platform Open
Source libraries
– OpenSceneGraph
– osgEarth
– wxWidgets
– Allows users to find support within those open source

communities for advanced customizations

13

Embedded Python

• Embedded scripting language is a key enabler for
plugin architecture
– Python is a popular scripting language, others include

Lua, Ruby, and JavaScript
– Python scripts are text files which can be treated as

input data
– Interpreted nature of Python language allows for

flexible initialization of runtime environment as
opposed to hard-coded initialization

– Example: CAST scenarios are implemented as
Python scripts to construct and initialize entities

14

Other Benefits of Embedding Python

• Rapid prototyping without recompile
– Exposure of C++ code within CAST framework via SWIG

(Simplified Wrapper Interface Generator)
– Allows development of new system model prototypes

quickly
– Once satisfied with prototype, system model can be

implemented in C++
• Allows user to execute Python code while simulation is

running
– This feature can be used to inspect the state of the

simulation by accessing simulation objects
– Can also be used to alter the state of the simulation which

is helpful for debugging and testing

15

Full Source Licensing

• End user is empowered to dig into the internals of
the simulation framework
– No “black box” barrier

• Similar benefits to Open Source licensing
– Ability to see source code to get deeper

understanding of framework’s internals
– Ability to modify source code to create advanced

customizations
– Ability to debug into framework’s source code to

identify cause of potential issues

16

Full Source Licensing

• End users can set the level of software support they
require

• Over time end user increases familiarity with
codebase source code
– Initially very hands on: Vendor heavily involved in

customization efforts (training, consulting,
maintenance)

– As end user develops proficiency with codebase
requires less vendor involvement (maintenance)

17

Vendor Benefits from Full Source Licensing

• Enforces robust configuration management and
software engineering best practices
– Required in order to support multiple customers with

multiple released versions
– Separation of work-for-hire from core CAST

development
• Provides a level of transparency to the customer

because source code is not hidden

18

Questions?

	Slide Number 1
	Overview
	Context
	Framework Description
	Customization through Plugin Architecture
	Problems Solved by Plugin Architecture
	Variety of Customizations
	Aspects of a Plugin Architecture
	Object-oriented Design
	Composition versus Inheritance
	Runtime Configuration
	Data Driven Approach
	Use of Open Standards
	Embedded Python
	Other Benefits of Embedding Python
	Full Source Licensing
	Full Source Licensing
	Vendor Benefits from Full Source Licensing
	Slide Number 19

