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Overview 

• Plugin Architecture 
– What problems are solved by plugin architecture 
– How it is accomplished 

• Embedded Python 
– Key enabler for plugin architecture 
– Other benefits of embedding Python 

• Full Source Licensing 
– End user benefits 
– Vendor benefits 
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Context 

• The Conflict Analysis & Simulation Tool 
(CAST) was developed by ManTech to 
provide a MS&A framework to rapidly 
simulation and visualize conflict 
scenarios for: 
– mission effectiveness analysis 
– requirements analysis 
– trade studies 
– technology assessment 
– tactics/CONOPS development 

• CAST is commercially available, but has 
also been employed on support 
contracts with Government customers. 

• Modularization through a plugin 
architecture is required to support a 
disparate client base and problem 
domains. 
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Framework Description 

• The CAST framework provides the core components 
which are used to create, run, and analyze 
simulations. 

• The CAST framework is extended to develop 
system models and scenarios specific to the client’s 
problem domain. 
– DHS DNDO: Radiation Detection 
– DoD: Naval Warfare 
– International: Air Warfare 
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Customization through Plugin Architecture 

Core framework extended and customized by adding features via plugin architecture 
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Problems Solved by Plugin Architecture 

• Plugin architecture provides clear separation for 
– Security/classification 
– Export control 
– Source code funding streams 
– Intellectual property 

• Specific models and scenarios cannot be shared 
– These models can exist completely within the plugin 

• Deployment is simplified 
– End user’s configuraation management can focus on 

the plugin-level 
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Variety of Customizations 

• Simulation framework must be flexible to support a 
variety of customizations to occur at the plugin level 
– Graphical User Interface (GUI) 
– Visualization 
– System models 
– Data inputs 
– Analysis outputs 
– Agent behaviors 
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Aspects of a Plugin Architecture 

• Successful plugin architecture requires: 
– Flexible architecture 

• Object-oriented design 
• Composition versus inheritance 
• Runtime configuration 

– Data driven approach 
– Use of open standards 
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Object-oriented Design 

• Code organized into a hierarchical structure of 
classes 

• Data and associated code are grouped together 
• Hierarchy of classes supports generalization where 

common aspects exist at higher levels and unique 
aspects are kept at lower levels 

• In object-oriented design, inheritance is a rigid 
compile-time constraint that cannot be changed at 
runtime 
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Composition versus Inheritance 

• To improve flexibility, object composition is a technique 
that can be used to specialize objects at runtime. 

• This can be thought of as “has a” (composition) versus 
“is a” (inheritance). 

• The ability to compose behavior or functionality lies in 
creating interfaces. 

• An example of kinematic motion for entities 
– Inheritance would dictate a hierarchy of classes for each 

entity with specialized movement algorithms (Vehicle, 
Ship, Aircraft, Airplane, Helicopter) 

– Composition provides an interface for movement and 
encapsulates the movement algorithms into a component 
attached to the base entity (Vehicle class with movement 
functors) 
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Runtime Configuration 

• To provide a flexible runtime architecture, framework 
must provide the ability to be configured at runtime. 

• Runtime configurability plays nicely with an 
embedded scripting language capability (more detail 
later) 

• Example of selecting system models with different 
fidelity 
– Object-oriented design with composition allows 

different fidelity models to be attached to entities at 
runtime, likely driven by data input 
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Data Driven Approach 

• Runtime configuration driven by data inputs 
– Execution changes based on inputs 
– Dynamic selection of runtime components versus 

hard-coded or static single-choice execution 
• Data driven system modeling 

– Algorithm versus data 
– Requires algorithms to be selectable and initialized at 

runtime 
– This approach doesn’t work for all system models, in 

which case, design falls back to traditional methods 
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Use of Open Standards 

• Use of Extensible Markup Language (XML) for data 
– Easy to parse 
– Human readable 
– Numerous tools exist for data entry and manipulation 
– Schema can be developed to enforce data structure 

• Use of existing best of breed cross-platform Open 
Source libraries 
– OpenSceneGraph 
– osgEarth 
– wxWidgets 
– Allows users to find support within those open source 

communities for advanced customizations 
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Embedded Python 

• Embedded scripting language is a key enabler for 
plugin architecture 
– Python is a popular scripting language, others include 

Lua, Ruby, and JavaScript 
– Python scripts are text files which can be treated as 

input data 
– Interpreted nature of Python language allows for 

flexible initialization of runtime environment as 
opposed to hard-coded initialization 

– Example: CAST scenarios are implemented as 
Python scripts to construct and initialize entities 
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Other Benefits of Embedding Python 

• Rapid prototyping without recompile 
– Exposure of C++ code within CAST framework via SWIG 

(Simplified Wrapper Interface Generator) 
– Allows development of new system model prototypes 

quickly 
– Once satisfied with prototype, system model can be  

implemented in C++ 
• Allows user to execute Python code while simulation is 

running 
– This feature can be used to inspect the state of the 

simulation by accessing simulation objects 
– Can also be used to alter the state of the simulation which 

is helpful for debugging and testing 
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Full Source Licensing 

• End user is empowered to dig into the internals of 
the simulation framework 
– No “black box” barrier 

• Similar benefits to Open Source licensing 
– Ability to see source code to get deeper 

understanding of framework’s internals 
– Ability to modify source code to create advanced 

customizations 
– Ability to debug into framework’s source code to 

identify cause of potential issues 
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Full Source Licensing 

• End users can set the level of software support they 
require 

• Over time end user increases familiarity with 
codebase source code 
– Initially very hands on: Vendor heavily involved in 

customization efforts (training, consulting, 
maintenance) 

– As end user develops proficiency with codebase 
requires less vendor involvement (maintenance) 
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Vendor Benefits from Full Source Licensing 

• Enforces robust configuration management and 
software engineering best practices 
– Required in order to support multiple customers with 

multiple released versions 
– Separation of work-for-hire from core CAST 

development 
• Provides a level of transparency to the customer 

because source code is not hidden 
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Questions? 
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