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Loading Operation 
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Horizontal pipe flow with small elevation 

Storage Tank 

Vehicle Tank 

Characteristic scales: L, D, d, ∆tP. 
Flow rates: chilldown, reduced fill, fast fill, replenish 
Fill time:          Tchill,        Tred,              Tfast,      Trep  
Total volume:   Vchill,       Vred,              Vfast,     Vrep  
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Typical Signals  Measured During Loading 
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Complexity of the cryogenic loading operations is related to: 

• Strongly non-equilibrium non-steady flow 

• Chilldown 

• Multiple fault regimes including mass and heat leaks 

• Active control 
 

 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
-350

-300

-250

-200

-150

-100

-50

0

50

100

t, sec

T

 

 

Δ𝑉𝑉𝑤𝑤 =
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝑤𝑤𝑐𝑐𝑣𝑣 𝑇𝑇𝑎𝑎𝑎𝑎 − 𝑇𝑇𝐿𝐿

𝑞𝑞𝑒𝑒𝑣𝑣𝜌𝜌𝐿𝐿
 

Δ𝑉𝑉𝑅𝑅 = 𝜋𝜋𝜋𝜋𝜋𝜋𝑄𝑄𝑅𝑅  Δ𝑡𝑡𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙/𝑞𝑞𝑒𝑒𝑣𝑣𝜌𝜌𝐿𝐿  

Δ𝑉𝑉𝑃𝑃 = 𝜋𝜋𝜋𝜋2𝜋𝜋/4 

Δ𝑉𝑉𝑤𝑤 + Δ𝑉𝑉𝑅𝑅 + Δ𝑉𝑉𝑃𝑃 ≈ 60 𝐺𝐺𝐺𝐺𝐺𝐺 
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K. Yuan, Yan Ji, J.N. Chung, “Cryogenic chilldown process under low flow rates”, IGHMT, 50 
(2007) 4011–4022 
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SINDA/FLUINT Tank model 
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Paul Schallhorn, ”LSP Upper Stage Propellant Tank Thermodynamic Modeling”, 2010 

nodes 
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Model of the Chilldown and Propellant Loading of the Space 
Shuttle External Tank 
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A. C. LeClair and A. K. Majumdar, NASA/Marshall Space Flight Center,  “Computational Model of the 
Chilldown and Propellant Loading of the Space Shuttle External Tank”, AIAA  

The Generalized Fluid System 
Simulation Program (GFSSP) 

Physics-based Modeling In Design & Development, Denver, 
Nov 2012 



GFSSP predictions 
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Measured and predicted ullage pressure in the LH2 tank. Agreement is 
excellent until slow fill begins, at which point the model is no longer able 
to match the pressure cycling that occurs during loading. This may be 
caused by the two phase mixture present in the tank once slow fill 
begins.  
A. C. LeClair and A. K. Majumdar, “Computational Model of the 
Chilldown and Propellant Loading of the Space Shuttle External Tank”, 
AIAA  
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Problem Formulation 
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The future autonomous system capable of accomplishing launch vehicle propellant 
load and drain without human interaction should be able to change its behavior in 
response to un-anticipated events.  
 
The complexity of this problem dictates the necessity of  

 development of a physics based model for loading operation that can 
reproduce accurately the time traces during the loading,  

 predict system response to various deviations from the loading protocol,  

 detect and localize system faults online.  



Methodology 
•  The main element of the model is  the NODE. In general it contains 

3D conservation equations for the mass, momentum, and the energy 
 
 
 
 

•  In medium fidelity models the following assumptions are introduced 
 Dynamics is one-dimensional (or quasi-two dimensional) 
 Momentum equation is reduced  ∇p=0  (in low Mach approximation M << 1). Except 

for the pipe and valve losses 
 Equation of states of an ideal gas   
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Common types of the nodes 
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Launchpad Sketch 
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Notice elevation at the Launchpad 
h=25.8m corresponding to ≈ 18 kPa 
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Node Presentation of our Original Model 
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9 nodes 
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1 node 



9 Integral-Differential Equations 
1)  5 Mass Conservation  Rate Eqs: 

Pressurizing mass flow from vaporizer: 
 

( ) , 0

0,
vap boil vap vap boil

boil

J J J J
J

otherwise

τ − − ≥= 




Transfer line flow from ST to ET: 

( )( )1 2tr eff tr trJ t p p Jα τ= − −

Auxiliary rate equations:   

( ) ( )
( )
( ) ( )

1

,

, 2 2 , 2

, ,

,

, , ,

vap eff

v vent i i

g vent g in

J p t t

J p t

J p t J p t

α
are all determined by filling 
protocol  

1 1l lv boil trm J J J= − −

1 , 1 1v boil v vent lvm J J J= − −

ST tank 
- LH2: 

 
- GH2: 

ET tank 
- LH2: 
 
- GH2: 

 
- GHE: 

2 2l lv trm J J= +

2 , 2 2v v vent lvm J J= − −

2 , , 2g g in g ventm J J= −

lviJ for i = 1,2 is determined by 
film energy conservation in ET 
and ST  (see next slide) 

Condensation-evaporation flow 
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Real
Estimated

Comparison with Real Data: ET 

Slow fill: pressure rises quickly as 
tank chills and LH2 boils off, rate 

slows as tank gets cooler and 
boiling rate reduces. 

Fast fill: tank mostly chilled, so pressure rate 
mostly dependent on tank filling. As ullage 
space decreases, pressure rate is increased. 

Reduced fast fill: fill 
rate is reduced, so 

pressure rate reduces. 

Topping: vent valve opened. 

Theoretical prediction for valve on-off oscillation loses its phase relative to experimental oscillations due to transient boil-off events in 
the ET, but once the transient decays, the phase of oscillation is recovered and the theoretical model correctly predicts real data. 
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• In this first version of the model the frequency of the pressure pulses in 
the ET was reproduced qualitatively (2-3 times lower than measured).  

• The fault detection based on the analysis of the pressure oscillations in 
the ET assumes that only one fault is detected while all other 
parameters take known nominal values. 

•  The fault detection required more than 200 sec to detect the fault. 



E F J K PV11 PV12 PV13 

0 0 0 1 1 1 0 

0 1 0 1 1 1 1 

1 1 0 1 1 1 1 

1 1 1 0.1 1 1 1 

0 1 1 0.1 1 0 1 

0 1 Ctrl 0 1 0 1 

 STPRESS 
STT LEVEL 

VAP SPLY  
VLV SIG PRESS  

TL PRESS 
SKID INLET PRESS ST ET 

E 

F 

K 

J PV12 
PV11 

FILTER INLET PRESS 

ET ULLAGE TEMP  

ET ULLAGE PRESS  

ORBINLET PRESS 

SKID OUTLET PRESS 

PRESS 
position 

1 

2 

3 

4 5 

6 

7 

PV13 

Model of LH2 Loading 

Pressurization (GH2) Pressurization (GHe)  

Slow Fill: 553-2773s 1000 

Fast Fill: 2773-5570s 7500 gpm 

Reduced: 5570-6988s 850 gpm 

Topping: 6988-9630s 800 gpm 

Replenish: to EOR mass preserving  
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• In general IDAE model can be written in the form 

• The output of the model is a set of time series data 

• That have to be compared with experimental data   

 
 
 
In a sense that the loss function is 
minimized and takes values below of 
some given threshold determined by 
the required accuracy of predictions. 
 
We need minimum number of nodes 
that satisfy this criteria. 

How many nodes should we add? 
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      Vaporizer Equations 
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This is valve equation 𝐽𝐽𝑣𝑣𝑎𝑎𝑣𝑣 = 𝛼𝛼𝑣𝑣𝑎𝑎𝑣𝑣√Δ𝑃𝑃 
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[1] J.H.Lienhard and J.H.Lienhard, “A heat transfer textbook”, 3rd ed., Cambridge, Phlogiston Press, 2003 

Wall film boiling correlations [1] 
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1. Open to pressurize up to 3.75 x 105 Pa 
2. Wait for ET to complete pressurization 
3. Open to pressurize up to 76.5 x 105 Pa 
4. Stabilize at the level 80.7 x 105 Pa 
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          ET Equations 5 
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          ET Vent valve dynamics 
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        Pipe Losses and Pipe Networks 

Δ𝑝𝑝 = � ∆𝑝𝑝𝑖𝑖
𝑁𝑁

𝑖𝑖=1
= � 𝑅𝑅𝑖𝑖𝑄𝑄2

𝑁𝑁

𝑖𝑖=1
= 𝑄𝑄2� 𝑅𝑅𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

E F J K PV11 PV12 PV13 

Press 0 0 0 1 1 1 0 

Slow 0 1 0 1 1 1 1 

Fast 1 1 0 1 1 1 1 

Reduced 1 1 1 0.1 1 0 1 

Topping 0 1 1 0.1 1 0 1 

Replenish 0 1 Ctrl 0 1 0 1 

Example. Resistance of the skid 
valves  

𝑅𝑅3 = 𝜆𝜆𝐾𝐾𝑅𝑅𝐾𝐾
−12 + 𝜆𝜆𝐿𝐿𝑅𝑅𝐽𝐽

−12
−2

 

𝑅𝑅3
(𝑆𝑆,𝐹𝐹) = 𝑅𝑅𝐾𝐾 

𝑅𝑅3
−12 = 0.1 𝑅𝑅𝐾𝐾

−12 + 𝑅𝑅𝐽𝐽
−12 

2F F
K KR p Q= ∆
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The differential pressure  along the line 
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The model can reproduce quite accurately pressure changes along the line including 
losses at the control valves near the ST, at the skid, and orbiter inlet.. 

 The measurements of the differential pressure signals provide a very sensitive tool 
for simultaneous fault detection along the line. 



 Additional Chilldown  During  Loading  
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The analysis of the model predictions leads to the conclusion that the launch pad facility is 
not fill with the liquid until 1000 sec into the loading operation.  This conclusion was later 
confirmed by the launch pad engineers  demonstrating the consistency of the model.  



           Chilldown Model 
  

( )
( )

( )( )
( )

( )( ) ( )( )

, ,

, , ,

, , ,

,
, , ,,

, , , , ,

, ,

, ,

; 20

1

/ 0.5

1

p l tr p b l

p v p b p out

p
p p pb p pb p out p p ET pw v

p p

v l
pw i pw i pw i pw pw pwv l

l
pb i pw i pw i ev l s w il

v vnt v p out

g g in vnt g

ET

m J J T K
m J J

p
p V J c T J c T Q

V V

T h T T l c

J h T T h T T

m J J
m J J

p
V

γ γ

ρ

γ

= − =

= −

−
= − + − −

= −

= − + +

= − +

= −

−
=















 ( )
( )

( )

, , , ,

,

, , ,

he p out p p ET vnt v vnt g wv
ET

ET ET ET v v g vg

ET l tr cd b

w i w i ET w i w w w

Q J c T Q Q Q

T p V m R m R

m J J J

T h T T l cρ

+ − − −

= +

= + −

= −

   





11/1/2012 26 

ID 

Wall 

Lq 

Int 

Lq 

ID 

4 5 + 
Physics-based Modeling In Design & Development, Denver, Nov 2012 
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Forced convection correlation for horizontal pipes 
• For the smooth tubes we use Petukhov correlation 

 
𝑓𝑓 = 0.79 ∙ 𝐺𝐺𝑙𝑙 𝑅𝑅𝑒𝑒𝐷𝐷ℎ − 1.64 −2

 for 104 < 𝑅𝑅𝑒𝑒 < 106 
 

• For fully developed flow. The Nusselt Number is given by the Petukhov correlation 
 

𝑁𝑁𝑢𝑢𝐷𝐷ℎ,𝑓𝑓 =
𝑓𝑓 8⁄ 𝑅𝑅𝑒𝑒𝐷𝐷ℎ − 1000 𝑃𝑃𝑃𝑃

1 + 12.7 𝑃𝑃𝑃𝑃2 3⁄ − 1 𝑓𝑓 8⁄
 

  

G. NELLIS, S. KLEIN, “Heat Transfer”, Cambridge University Press  

The effect of forced convection on external 
flow boiling for different flow velocities. 

Flow patterns during evaporation in a horizontal tube with a uniform 
heat flux. (From Collier and Thome, 1994.) 
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• The convection number Co: 
 

• The Bo is the boiling number, defined as the ratio of the heat flux at the wall to the heat flux required to 
completely vaporize the fluid 
 
 

• The Froude number Fr is defined as the ratio of the inertial force of the fluid to the gravitational force 
 
 

 according to Shah the Reynolds number should be evaluated using the liquid mass velocity, G(1-x),  while the 
Froude number should be evaluated using the total mass velocity, G. 

 
 
 
 

  
 
 
 
 

 

Flow boiling correlation for horizontal pipes 
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evBo h Gh=

( )2 2
,l sat hFr G gDρ=

( )0.8
, ,1 1 v sat l satCo x ρ ρ= −
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Modeling Chilldown 
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New Capabilities and Sensitivity 
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Adding nodes to 
the ullage space 
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Fault Detection and Isolation 

We now demonstrate that the developed model can be 
used to detect and isolate multiple faults including 
 

• Blocking of the pressures control valve of the vaporizer 
•  Clogging of the valves along the transfer line 
•  Heat and mass leaks in the vehicle tank 
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Capabilities: pressure control fault 
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Capabilities: pressure control fault 
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Simulations Experiment 

Flow is blocked although it 
appears that the valve area is 
stack  at an intermediate value 
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Simultaneous Detection of Multiple Faults 
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10% K valve clogging between 
t=5900 and t=6200 sec. 

10% PV11 valve clogging 
between t=3200 and t=3500 sec. 

10% PV12 valve clogging 
between t=3800 and t=4100 sec. 
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Capabilities:  Heat Leak Fault 
11/1/2012 35 

The LC-39 Pad B liquid hydrogen tank experiences on average about 550 gallons per day additional boil-o than the equivalent tank 
at Pad A. A large mold spot exists on the Pad B tank that is suspected to be the site of a large heat leak. IR camera photography 
reveals that this spot is indeed much colder than the rest of the tank. Photos of the effected area are shown in Figure. 
Mark Nurge, “LC-39B LH2 Tank Thermal Analysis”, May 8, 2009 

Charlie Goodrich 

The current model is capable of simulating this nontrivial and important fault 
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Physics of the Heat and Mass Flow 
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External 
heat flow 

Pressurization  gas 
mass and heat flow 
(He/H2) 

Heat and mass  flows 
through the interface 

Interface velocity 

Vu  ullage volume 
p   ullage pressure  
T   ullage temperature 
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Main physical processes 
1.  heat and mass transfer  
2.  boiling,  
3.  evaporation-condensation,  
4.  stratification,  
5.  natural and forced convection,  
We use 
Full scale finite element 3D  transient 
turbulent  modeling  to validate our 
low-fidelity FD&I models 

Heat and mass leaks in the vehicle tank appear as small alterations of the  heat and mass fluxes in the ullage space.  
Detection of  this faults requires substantially higher fidelity model of the vehicle tank as compared to three-node model 
discussed earlier.    To be able to process signals online such model will have to rely on free convection correlations.   
Therefore a special attention has to be paid to validation and verification of this model. 



No LN2 leaks 
𝑙𝑙𝑑𝑑
𝑙𝑙𝑑𝑑
≈ 0        𝑙𝑙𝑣𝑣𝑙𝑙𝑑𝑑 = −𝛾𝛾𝑣𝑣

𝑑𝑑
𝑙𝑙𝑑𝑑
𝑙𝑙𝑑𝑑 + 𝛾𝛾−1

𝑑𝑑 �̇�𝑄𝑁𝑁2 − �̇�𝑄𝑤𝑤  
     𝐴𝐴𝜋𝜋𝜌𝜌𝑐𝑐 ⋅ 𝑙𝑙𝑇𝑇𝑤𝑤

𝑙𝑙𝑑𝑑
= 𝐴𝐴ℎ𝑤𝑤 𝑇𝑇 − 𝑇𝑇𝑤𝑤 + �̇�𝑄𝑟𝑟𝑎𝑎𝑙𝑙 

 
During the impulse �̇�𝑄𝑁𝑁2 ≫ �̇�𝑄𝑤𝑤 
During the relaxation �̇�𝑄𝑁𝑁2 = 0 
 
During the heat  leak 

𝐴𝐴𝜋𝜋𝜌𝜌𝑐𝑐 ⋅
𝜋𝜋𝑇𝑇𝑤𝑤
𝜋𝜋𝑡𝑡

= 𝐴𝐴ℎ𝑤𝑤 𝑇𝑇 − 𝑇𝑇𝑤𝑤 + �̇�𝑄𝑟𝑟𝑎𝑎𝑙𝑙 + �̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑑𝑑,𝑙𝑙𝑒𝑒𝑎𝑎𝑙𝑙 
During the gas mass leak the wall equation does not change, but 
 

𝜋𝜋𝑝𝑝
𝜋𝜋𝑡𝑡

=
𝛾𝛾 − 1
𝑉𝑉

�̇�𝑄𝑁𝑁2 − �̇�𝑄𝑤𝑤 − �̇�𝑄𝑔𝑔𝑎𝑎𝑔𝑔,𝑙𝑙𝑒𝑒𝑎𝑎𝑙𝑙  
 
The problem is to estimate �̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑑𝑑,𝑙𝑙𝑒𝑒𝑎𝑎𝑙𝑙 and �̇�𝑄𝑔𝑔𝑎𝑎𝑔𝑔,𝑙𝑙𝑒𝑒𝑎𝑎𝑙𝑙 that will result in the 
half impulse counting (considering half impulse counting detectable) 
 
LN2 mass leaks  

𝑙𝑙𝑣𝑣
𝑙𝑙𝑑𝑑

= −𝛾𝛾𝑣𝑣
𝑑𝑑
𝑙𝑙𝑑𝑑
𝑙𝑙𝑑𝑑

+ 𝛾𝛾−1
𝑑𝑑

�̇�𝑄𝑁𝑁2 − �̇�𝑄𝑤𝑤  

Mass or heat leaks could results in the pulses phase shifts or even a 
different number of pulses during the control time.   

𝑙𝑙𝑎𝑎
𝑙𝑙𝑑𝑑

= 𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐽𝐽𝑙𝑙𝑜𝑜𝑑𝑑       𝑇𝑇 = 𝑣𝑣𝑑𝑑
𝑎𝑎𝑅𝑅

  

Mass and Heat Leaks Modeling 
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5

• The idea of the approach is to substitute 
complex measurements of the nonlinear 
slope variation with simple pulse counting 
technique. 

• In a sense these are direct measurements 
of the linear susceptibility of the system. 

• Or active pulse interrogation of the system 

Modeling of such response imposed on 
the slow nonlinear variation of the state of 
the system requires  development of a  
higher fidelity model. 

Leak  No leak  
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Low Mach Number Approximation 
  𝜌𝜌𝑑𝑑 + 𝛻𝛻 ⋅ 𝜌𝜌�⃗�𝑣 = 0 

𝜌𝜌�⃗�𝑣 𝑑𝑑 + 𝛻𝛻 ⋅ 𝜌𝜌�⃗�𝑣 ⊗ �⃗�𝑣 +
1
𝑀𝑀2 𝛻𝛻𝑝𝑝 =

1
𝐹𝐹𝑃𝑃2 𝜌𝜌�⃗�𝑔 

𝜌𝜌𝑒𝑒 𝑑𝑑 + 𝛻𝛻 ⋅ 𝜌𝜌𝑒𝑒 + 𝑝𝑝 �⃗�𝑣 =
𝑀𝑀2

𝐹𝐹𝑃𝑃2 𝜌𝜌�⃗�𝑣 ⋅ �⃗�𝑔 

𝑝𝑝 = 𝛾𝛾 − 1 𝜌𝜌𝑒𝑒 −
1
2𝑀𝑀

2𝜌𝜌�⃗�𝑣 ⋅ �⃗�𝑣  

𝑝𝑝 =
𝑝𝑝′

𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓
; 𝜌𝜌 =

𝜌𝜌′

𝜌𝜌𝑟𝑟𝑒𝑒𝑓𝑓
; 𝑣𝑣 =

𝑣𝑣′

𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓
; 𝑥𝑥 =

𝑥𝑥′

𝐺𝐺𝑟𝑟𝑒𝑒𝑓𝑓
; 𝑡𝑡 =

𝑡𝑡′𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓
𝐺𝐺𝑟𝑟𝑒𝑒𝑓𝑓

 

 

The Froude number is the ratio of the flow speed to the speed of infinitesimal (incompressible) gravity waves in the same 
medium: 𝐹𝐹𝑃𝑃 = 𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓 𝑔𝑔𝐺𝐺𝑟𝑟𝑒𝑒𝑓𝑓⁄ . In fluid dynamics, gravity waves are waves generated in a fluid medium which has the 
restoring force of gravity or buoyancy 
uref is independent of cref =𝛾𝛾 𝑝𝑝𝑟𝑟𝑒𝑒𝑓𝑓 𝜌𝜌𝑟𝑟𝑒𝑒𝑓𝑓⁄  to ensure that uref is well defined when M→0. 
uref is usually chosen from the condition 𝜌𝜌𝑢𝑢𝑟𝑟𝑒𝑒𝑓𝑓2 = 𝐺𝐺𝑟𝑟𝑒𝑒𝑓𝑓𝑔𝑔 𝜌𝜌 𝑇𝑇𝑜𝑜 − 𝜌𝜌 𝑇𝑇𝑤𝑤  

Eigenvalues of  the Jacobian Flux Function 

𝑓𝑓𝑀𝑀 =

𝜌𝜌�⃗�𝑣 ⋅ 𝑙𝑙

𝜌𝜌�⃗�𝑣�⃗�𝑣 ⋅ 𝑙𝑙 +
1
𝑀𝑀2 𝑝𝑝 ⋅ 𝑙𝑙

𝜌𝜌𝑒𝑒 + 𝑝𝑝 �⃗�𝑣 ⋅ 𝑙𝑙

 

�⃗�𝑣 ⋅ 𝑙𝑙;     �⃗�𝑣 ⋅ 𝑙𝑙 ± 𝑐𝑐
𝑀𝑀

 ;    𝑐𝑐2= 𝛾𝛾 𝑝𝑝 𝜌𝜌⁄  
degenerate when 𝑀𝑀 = 𝑜𝑜𝑟𝑟

𝑣𝑣𝑟𝑟/𝜌𝜌𝑟𝑟
 → 0. 

The following expansion is usually introduced: 
𝑝𝑝 = 𝑝𝑝(0) + 𝑀𝑀2𝑝𝑝(2) 

The convective interface velocities 𝑣𝑣∗ are corrected by pressure in the second order: 

�⃗�𝑣𝐼𝐼 = �⃗�𝑣𝐼𝐼∗ −
∆𝑑𝑑
2
𝛻𝛻𝑣𝑣𝐼𝐼

2

𝜌𝜌𝐼𝐼
      ∑ 𝐼𝐼 𝜌𝜌ℎ�⃗�𝑣 𝐼𝐼 ⋅ 𝑙𝑙𝐼𝐼∈ℐ = − 𝑑𝑑

𝛾𝛾−1
𝑙𝑙𝑣𝑣 0

𝑙𝑙𝑑𝑑
. 

1. Klein R. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One-
dimensional flow. Journal of Computational Physics. 1995;121(2):213-237. 

2. Schneider T, Botta N, Geratz KJ, Klein R. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, 
Variable Density Zero Mach Number Flows. Journal of Computational Physics. 1999;155(2):248-286. 
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1. Use only 1st approximation 𝛻𝛻𝑝𝑝(0) = 0  and neglect completely the momentum 
equation   𝜌𝜌�⃗�𝑣 𝑑𝑑+𝛻𝛻 ⋅ 𝜌𝜌�⃗�𝑣 ⊗ �⃗�𝑣 + 𝛻𝛻𝑝𝑝(2) = 1

𝐹𝐹𝑟𝑟2
𝜌𝜌�⃗�𝑔 

 
    𝜌𝜌𝑑𝑑 + 𝛻𝛻 ⋅ 𝜌𝜌�⃗�𝑣 = 0 

𝜌𝜌𝑒𝑒 𝑑𝑑 + 𝛻𝛻 ⋅ 𝜌𝜌𝑒𝑒 + 𝑝𝑝 �⃗�𝑣 = 0 
𝑝𝑝 = 𝛾𝛾 − 1 𝜌𝜌𝑒𝑒 

 
2. Use the fact  that 𝑝𝑝(0) = 𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑡𝑡 in the whole volume and 𝜌𝜌𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑡𝑡 for each CV:  
 

𝑝𝑝𝑑𝑑 + 𝛾𝛾𝑝𝑝𝛻𝛻 ∙ �⃗�𝑣 = 0  𝑐𝑐𝑃𝑃   
𝑉𝑉𝑗𝑗
𝛾𝛾𝑝𝑝

𝜋𝜋𝑝𝑝
𝜋𝜋𝑡𝑡 = −

𝜋𝜋𝑉𝑉𝑗𝑗
𝜋𝜋𝑡𝑡 +  �𝑢𝑢𝑙𝑙𝑗𝑗𝑆𝑆𝑙𝑙𝑗𝑗

𝑙𝑙≠𝑗𝑗

 

 
3. Integrating over the whole volume we have   𝛾𝛾𝑣𝑣

𝛾𝛾−1
= 𝑐𝑐𝑝𝑝𝑣𝑣

𝑅𝑅
= 𝑐𝑐𝑣𝑣𝜌𝜌𝑇𝑇 

 
𝑉𝑉𝑗𝑗

𝛾𝛾 − 1
𝜋𝜋𝑝𝑝
𝜋𝜋𝑡𝑡 = −

𝛾𝛾𝑝𝑝
𝛾𝛾 − 1

𝜋𝜋𝑉𝑉𝑗𝑗
𝜋𝜋𝑡𝑡 +  �𝑐𝑐𝑣𝑣𝑇𝑇𝜌𝜌𝑢𝑢𝑙𝑙𝑗𝑗𝑆𝑆𝑙𝑙𝑗𝑗

𝑙𝑙≠𝑗𝑗

= −
𝛾𝛾𝑝𝑝
𝛾𝛾 − 1

𝜋𝜋𝑉𝑉𝑗𝑗
𝜋𝜋𝑡𝑡 − �̇�𝑄𝑤𝑤 − �̇�𝑄𝑓𝑓 + �̇�𝑄𝑖𝑖𝑖𝑖,𝑣𝑣(𝑔𝑔) 

Energy equation as a divergence constraint 
  

1. Kirill’s algorithm 
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System of the ET equations (ULLAGE) 
  Mass and energy conservation for the bulk gas elements 

( )
, 1, , 1,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , 1, 1, , , ,

, ,

, ,i B i B i B i BL p

i B i B i B i B i B i B i BL i B
v g v g

m J J J J uS h c T
d m u W J h J J h
dt

λ λ λ λ λ λ λ λ

λ λ

ρ+ +

+ +
= =

= − − = =

= − + − +∑ ∑





For the internal boundary layer gas elements 

( )

( ) ( ) ( ) ( )
, 1, , ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , 1, 1, , , , ,

, ,

i L i L i L i BL

i L i L i e i L i L i L i L i L i BL i B
v g v g

m J J J
d m u Q W J h J h J h
dt

λ λ λ λ

λ λ λ λ λ λ λ λ λ λ

λ λ

−

− −
= =

= − +

= − + − +∑ ∑



 

For the lowest horizontal vapor layer 

( )

( ) ( ) ( ) ( ) ( ) ( )
1, 2, 1, 1, 2, 1,

( ) ( ) ( ) ( ) ( ) ( )
1, 1, 1, 2, 2, 1, 1,

, ,

;v v v g g g
B B L ev B B L

B B v B B B B B ev vs
v g v g

m J J J m J J
d m u Q W J h J h J h
dt

λ λ λ λ λ λ

λ λ= =

= − + = −

= − + − +∑ ∑

 

 

For the upper horizontal vapor layer 

( )

( ) ( ) ( )
, 1, , ,

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , 1, 1, , , , ,

, ,

n B n L n B e

n B n B top n B n B n B n B n B e e
v g v g

m J J J
d m u Q W J h J h J h
dt

λ λ λ
λ

λ λ λ λ λ λ λ
λ λ

λ λ

−

− −
= =

= − +

= − + − +∑ ∑



 

Fluxes between Control Volumes are 
calculated in low Mach approximation 

Ji,BL 

Ji,B 

Ji+1,B 

Jin 

Jev 

Jout 

δ 

Qi,w 

Qs Ji,
L 

The system is closed using equations of state for ideal gas.  The 
real tank geometry was used. 

𝑉𝑉𝑗𝑗
𝛾𝛾𝑝𝑝

𝜋𝜋𝑝𝑝
𝜋𝜋𝑡𝑡

= −
𝜋𝜋𝑉𝑉𝑗𝑗
𝜋𝜋𝑡𝑡 +  �𝑢𝑢𝑙𝑙𝑗𝑗𝑆𝑆𝑙𝑙𝑗𝑗

𝑙𝑙≠𝑗𝑗
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Interface: balance 
  

( ) ( )

1
2

0

0 5

0

33 ; 4.5 10 /

C f
lv f lv

C l

C lv

T T
h T h

T T

T K h J kg

 −
=   − 

= = ×

Heat release at 
the interface 

( )( ) 0v l lv lv lv p u s l vQ Q J h J c T T Q Q− + + − > =   

1.Under non-equilibrium conditions (blow-down) there is 
continuous condensation/evaporation flow to/from the 
surface; 

2.There is no accumulation of the mass; 
3.The heat released (Jlvhvs ) can not be accumulated at the 

interface and is balanced by heat flow to/from interface on 
liquid and vapor sides; 

4.The heat flow in vapor (liquid) phases are defined as follows 
 
 
 

5.During prepress and repress                                         and 
convective heat transfer can be neglected 
 

( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

cv cd cd
v l v l v l v l s v l v lQ Q Q A T T Qα= + = − +   

liquid 

vapor Jlv �̇�𝑸𝒗𝒗 

�̇�𝑸𝒍𝒍 

20.4g s LT T T K> > =
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Heat conduction 
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Optimal grid 
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Heat conduction at the interface can be found by solving numerically HCE 
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on the optimal grid [1-3] 

[1] D. Ingerman, V. Druskin, and L. Knizhnerman, “Optimal finite difference grids and rational approximations of the square root”, I. 
Elliptic problems. Commun. Pure Appl. Math., 53, pp. 1039–1066 (2000). 
[2] V. Druskin, Spectrally optimal finite difference grids in unbounded domains. Schlumberger-Doll Research Notes, pages EMG–002–
97–22, 1997. 
[3] V. Druskin and S. Moskow, ”Three-point finite difference schemes, Pad´e and the spectral Galerkin method”, I. One-sided impedance 
approximation., Math. Comput., 71, pp. 995–1019 (2001).' 
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 To detect heat and mass leaks in the GN2 vehicle (storage) tank we 
propose to use/modify/upgrade standard technique verified and 
validated for LH2 and LO2 tanks 

 The technique is using calibrated pulses of hot gas introduced in the 
pressurized tank  every time when pressure goes below preset limit. 

 Validation of the model:  
o The top figure shows comparison of the model predictions (blue) 

with experimental data (green) for LO2 tank during countdown 
before physics model is improved and validated;  

o The middle figure shows high-fidelity model used for validation;  
o The bottom figure shows performance of the model after its 

validation and correction using improved:  
• material properties;  
• GHe pressurization pulse dynamics;  
• free convection correlations at the wall.’’’ 
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Model validation using LH2 Shuttle data 
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Model validation using Shuttle data for LH2 ET 
This test demonstrates that the model (blue) can 
accurately reproduce  both experimental (green) 
pressure and temperature time series data for 
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Model predictions 
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Tank volume 2000 Gal; 
Temperature of GN2 flow is 572R; 
GN2 pulses had duration 0.5s,  
flow rate 0.5lb/s, shark fin shape 
 
• In this test we first check the 

dispersion of the pulses 
frequency  as a function of the 
pulses mass flow dispersion. It 
is shown that to detect 1 extra 
pulse the deviation of the mass 
flow rate should be kept within 
few % 
 

• In the next test a continuous  
heat leaks of various level are 
applied to the patch with area 
1m2. It is shown that the heat 
leak 1kW can be detected 
(given condition above on the 
deviation of the  pulse mass 
flow rate) 

Heat leak in the tank 
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Tank volume 2000 Gal; 
Temperature of GN2 flow is 572R; 
GN2 pulses had duration 0.5s,  
flow rate 0.5lb/s, shark fin shape 
 
• In the 3rd test we demonstrate 

liquid leaks with mass flow rate 
0.5 kg/s (0.116 Gal/s) can be 
detected 
 

• In the final test it is shown that 
the gas leak with mass flow rate 
0.01 kg/s can be detected 
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Stratification and Chilldown (Nodes) 
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Conclusions 
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oModel of the LH2 loading operation was developed 
and validated 
 Pressure oscillations and losses in transfer line can be 

accurately reproduced 
oThe model capability of detecting multiple faults were 

demonstrated including: 
 Vaporizer Pressure Control faults 
 Simultaneous valve clogging in transfer Line  
 Mass and Heat Leaks in the Vehicle tank 

oWork in progress:  
 Chilldown model of the transfer line coupled to stratification model of 

the vehicle tank 
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