Advances in Thin-Film Thermal Battery Processes: Performance and Cost Benefits
J. Reinig
Thin-Film Technology Development
Overview

Objective: Develop a technology which can capture the following characteristics over traditional Thermal Battery technology

Manufacturing Benefits
- Easier to Handle Thin Components
- Reduced Production Time/Cost

Performance Benefits
- Shorter Rise Time
- Increased Battery Power Capability
- Reduced Battery Weight/Volume
Thin–Film Technology Development
Ease of Handling

Ease of handling is increased with the addition of the binder
- Easier Storage Solutions
- Reduced Stacking Time
- Reduction in FOD
Thin–Film Technology Development
Reduced Production Time

High-Speed processing techniques reduce production/cost.

• Thin-Film component production is a magnitude higher than pellet production.
 • Increased surge capability
• Automation can more easily be integrated.
 • SPC and storage
Thin–Film Technology Development

Improved Production Rate

Coating rate of thin-film parts is a magnitude higher than pressing pellets

- Lower Production Cost
- Better Surge Capability

Small Roll-to-Roll
Coating Equipment

Pellet Presses
Thin–Film Technology Development

Improved Rise Time

Activation time determined by a multi-step process

- Activation of igniter or primer creates flame
- Heat pellets light and burn out
- Cells come to temperature
- Electrolyte melts

Lower Weight = Reduced Rise Time = Thin-Film Advantage

POWER IS AVAILABLE

0

0.002s

0.020 – 0.500s

This document is the property of ATB and must not be copied, reproduced, duplicated nor disclosed to any third Party, nor used in any manner whatsoever without prior written consent of ATB Inc.
Thin–Film Technology Development
Improved Rise Time

Thin-Film vs Pellet battery

Activation
-40°C Thin-Film: 23ms (18% faster)
+70°C Thin Film: 18ms (33% faster)
Achieved Goal of < 50ms

Note: Time=0 differs from test to test and is accounted for in activation time calculation.
Battery Characteristics

Design: Two Stacks of 5 Cells in Parallel
Size: 0.625” Dia. X 2.0” Length
 (Achieved 0.625” Dia X 1.4” Length)
Load: 0.75A
Start Time: 50 ms
 (Achieved 23ms tested @ -40°C)
Temp. Range: -40°C to +70°C

NOTE:
• Battery is primer fired for lab testing
• Battery if inertially fired for Air Gun Testing at ARDEC
• Inertial starter effort done by Omnitek
Thin–Film Technology Development
Increased Battery Power Capability

Battery Power Can be Increased/Optimized by introducing parallel stacks

- Reduction in battery impedance by introducing more equivalent cell area which helps voltage regulation in high current applications

- Length/weight increased only slightly for additional thin-film stacks

- Length/weight increased dramatically for traditional pressed powder pellet stack because of pellet manufacturability
Reduced battery weight and volume is beneficial for tight-tolerance / high-performance applications

- Traditional pellet battery designs are sometimes limited by manufacturability of pellets
 - Pellets are delicate if made too thin
 - Critical thickness based on pellet diameter
 - Result is batteries designed with excess capacity

- Thin-Film battery designs can use optimized cell thicknesses/weights because thinner cells can be easily manufactured
 - Critical thickness is based on the thin-film processing
 - Critical thickness is approached for thicker coatings
 - Lowered cell thickness/weight = lower battery height/weight
 - Reduction in materials used in batteries = lower material cost
Thin–Film Technology Development

Current Minimum Cell Thickness Comparison

<table>
<thead>
<tr>
<th></th>
<th>Small Cell Diameter</th>
<th>Medium Cell Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellet Th. (in.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS Foil</td>
<td>0.001 (x 2)</td>
<td>0.003</td>
</tr>
<tr>
<td>Anode</td>
<td>0.007</td>
<td>0.014</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>0.008</td>
<td>0.014</td>
</tr>
<tr>
<td>Cathode</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td>Heat</td>
<td>0.010</td>
<td>0.016</td>
</tr>
<tr>
<td>Total Cell</td>
<td>0.031</td>
<td>0.061</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thin Film Th. (in.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS Foil</td>
<td>0.001 (x 2)</td>
</tr>
<tr>
<td>Anode</td>
<td>0.003</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>0.006</td>
</tr>
<tr>
<td>Cathode</td>
<td>0.003</td>
</tr>
<tr>
<td>Heat</td>
<td>0.009</td>
</tr>
<tr>
<td>Total Cell</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Thickness Savings

- 25% (Small Cell Diameter)
- 55% (Medium Cell Diameter)
Thin-Film Technology Development

Doctor Blade With Micrometer Setting for Hand Coating

Anode

Separator

Cathode

Heat
Conclusion

Goals Met – Fast Start, Smaller, Robust Battery

• Start Time (Preconditioned at -40°C)
 • Achieved **28ms** for Pressed Pellet Battery (SN009)
 • **23ms** for Thin Film Battery With Pellet Heat (SN022)

• Layer Thickness Reduced compared to Pellet by ~25%

• Battery height reduced from 2.0” to 1.4”

• Air Gun Testing (15,000g) with Thin-Film Battery at ARDEC – Successful
Path Forward

• Longer-Life Applications

• Process Industrialization
 • Transition to higher speed coaters, calendars and punching

• Thin-Film Heat Source
 • Investigations are underway to choose a heat source which is safe, performs well and is cost-effective
Acknowledgement

Thank you to:

ARDEC: **Battery development funding, air gun testing and support**
Carlos Pereira (POC), Charles McMullan, Jason DeVenezia, Brad Armstrong

Omnitek: **Inertial starter development, production and testing support**
Dr. Jahangir Rastegar, Rich Murray

ASB Group: **Thin Film technology development funding and support**
Emmanuel Durliat
Author Information

Jeffrey Reinig
Advanced Thermal Batteries
410-568-2217
Jeffrey.Reinig@atb-inc.com