Jim Strock
Director, Seabasing Integration Division
Headquarters, U.S. Marine Corps
Combat Development & Integration
Quantico, Virginia 22134
703-784-6094
james.strock@usmc.mil

Marine Corps
Seabasing
Requirements and Strategy

NDIA
Expeditionary Warfare Conference

13 September 2012
Facts

• **We are a maritime nation.** Freedom of movement and freedom of access are key to our national security and economic stability.

• **The littorals contain the key global engagement points,** and the Navy-Marine Corps team is uniquely organized, trained, and equipped to assure access and influence in the littorals.

• **Amphibious warships are more than transports.** They are versatile, interoperable platforms serving as the cornerstone of America’s ability to project power and respond to the range of crises.

• **Connectors are a critical enabler** of amphibious capability and require adequate resourcing.

• **The Marine Corps requirement for amphibious shipping** is based on war plans containing two MEBs conducting simultaneous forcible entry operations.

• **MPF is a proven capability** that provides global coverage, forward presence, and crisis response.

• The introduction of the **T-AKE, MLP and LMSR** into the MPF program will create a **seabasing-enabled capability that provides employment options that span the range of military operations.**
Seabasing In Strategy & Concepts

- Seabasing offers Power Projection and Freedom of Movement
- Seabasing enables Cross Domain Synergy
- Seabasing sustains Persistent Presence and Crisis Response Activities
- Seabasing supports Defeating Area Denial
- Freedom of Action: An Army-Marine Corps Concept
 February 2012
- Joint Operational Access Concept
 January 2012
- Report of the Amphibious Capabilities Working Group
 February 2012
- Seabasing helps achieve Littoral Dominance

Seabasing supports Defeating Area Denial
Asia-Pacific region contains 61 percent of the world’s population.

15 of the world’s 28 Megacities are in the Asia-Pacific region.

13 of the 15 Megacities in Asia-Pacific are within 100 km of the sea.

Western half of Ring of Fire:
From 2001-2010, ~70K people/year were killed in the Asia-Pacific region due to natural disasters, resulting in 65% of the world’s total death from such causes and ~$35B of economic damage per year.

“...by the time we're done, it'll be about a 40/60 mix Atlantic/Pacific, very different from our history”
-- Dr Aston Carter, Dep Sec Def, March 6, 2012 CFR Speech.

12 of the top 15 U.S. trading partners (import / export) are in Asia-Pacific.

Five security treaties in the Asia-Pacific region.
Seabasing Spans
The Full Range of Military Operations

137 Amphibious Operations since 1982...Amphib ships are not just for MCO
Today & Tomorrow’s Seabasing Capability

LHA-3
Lifts and supports over 1300 Marines and the MAGTF command & control nodes. Is main base to fixed (JSD), rotary wing, full rotor, and unmanned aircraft systems. Well deck supports simultaneous landing unit operations. Level II medical capability.

LPD-17
Capable of basing over 700 Marines, their equipment and supplies and projecting capabilities ashore with LCACs, conventional landing craft, amphibious connectors and rotary lift craft.

LSD
Provides largest capacity to operate landing craft in support of MAGTF operations.

LMSR
Military Sealift Command’s (MSC) Large, Medium Speed, Roll-On/ Roll-Off ship (LMSR) program significantly expands the nation’s sealift capability as a prime mover of US military equipment. The ships carry vehicles and equipment to support humanitarian missions, as well as combat missions.

Mobile Landing Platform
Leverages float-on/float-off technology and has raised vehicle platform, sideport ramp, mooring fenders and LCAC lanes. Utility of “Interoperable Pier in the Ocean” spans the Range of Military Operations.

Ship to Shore Connector (SSC)
Provides modernized landing craft over-the-beach capability.

T-AKE
Offers selective access and off load of unutilized supplies for prepositioning MEB and other MAGTFs operating in the sea base or ashore.

In future crises, forward based and forward deployed amphibious and MPF forces will continue to demonstrate their inherent flexibility and utility by aggregating with surged forces to conduct engagement, crisis response or forcible entry operations.
Amphibious Warships

LHA-6
LHD
LPD
LSD
LHA 6 USS AMERICA

Launched 4 June 2012 Pascagoula, Mississippi

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>22.3 kts</td>
</tr>
<tr>
<td>Draft (full)</td>
<td>28.72 ft</td>
</tr>
<tr>
<td>Crew</td>
<td>1,204 (102 Officer, 78 > E7, 1,024 < E6)</td>
</tr>
<tr>
<td>Embarked Landing Force</td>
<td>1,518 (157 Officers, 57 > E7, 1,304 < E6)</td>
</tr>
<tr>
<td>Surge</td>
<td>184 Accommodations</td>
</tr>
<tr>
<td>Medical Capability</td>
<td>2 OR, 24 Ward, NCRTS</td>
</tr>
<tr>
<td>Mass Casualty/ Receiving</td>
<td>699 Overflow</td>
</tr>
<tr>
<td>Potable Water</td>
<td>200,000 gal/day</td>
</tr>
<tr>
<td>Surface Interface Point</td>
<td>None</td>
</tr>
<tr>
<td>Well Deck Capacity</td>
<td>N/A</td>
</tr>
<tr>
<td>Flight Deck (Spots, Level, Class)</td>
<td>9 Spots (6 Avail due to Stbd A/C Stow) 90,274 sqft, LVL 1, CL</td>
</tr>
<tr>
<td>Elevators</td>
<td>2, One Stbd (37.5 t), One port (37.5 t)</td>
</tr>
<tr>
<td>Hangar</td>
<td>25,937 sqft, 2 Seven Frame High Bays (49 ft ea) (3,918 sqft)</td>
</tr>
<tr>
<td>Ramp</td>
<td>Pier side Side Port</td>
</tr>
<tr>
<td>Vehicle Sq Ft (Net)</td>
<td>10,328 sqft</td>
</tr>
<tr>
<td>Cargo Cube (Net)</td>
<td>160,000 sqft</td>
</tr>
<tr>
<td>Lifting Capability</td>
<td>Crash Crane (50K lb)</td>
</tr>
<tr>
<td>Cargo Fuel</td>
<td>1,300,000 gal</td>
</tr>
<tr>
<td>Motor Gasoline</td>
<td>330 gal (embarked drum or bladder)</td>
</tr>
</tbody>
</table>
LHA (R) Flight 1 Decision

LHA-8

- Hull form decision MOA signed Feb 2012
- Well deck re-introduced
- Incorporates a reduced island concept (RIC)
- FY-17 procurement and delivery in FY-22
LHA-6 to LHA-8 Concept Evolution

LHA 6 (LHA(R) Flight 0)

- High Bay’s Two 7 frame
- Aviation Shops
- Aviation Storerooms

LHA 8 (LHA(R) Flight 1 Full)

- High Bays 7fr & 3fr
- Aviation Shops
- Aviation Storeroom 2 ½ Storerooms
- 8 FT WIDER BEAM
- VEHICLE STOW
- AIRCRAFT HANGAR
- AIMD
- REDUCED ISLAND CONCEPT
- SPACES DELETED, WING WALL UNITS MODIFICATION FOR WELL DECK
- HOSPITAL FWD 1 SUB-DIVISION; TROOP BERTHING DELETED
- TROOP BERTHING (Frames 57 - FWD)
- LWR CARGO AMMO MAG
- UPR CARGO AMMO MAG
- RED MEDICAL (Frames 73 - 57)
LHA-8
Increased Flight Deck Area

• Design expectations:
 • Add ~ three aircraft parking spots in starboard bone
 • No locked spots on flight deck, or
 • Provide space for MV-22 in maintenance mode without blocking port operating spots
Surface Connectors

- Ship to Shore Connector (SSC)
- Landing Craft Utility (LCU)
- Roll on/Roll off Discharge Facility (RRDF)
- Improved Navy Lighterage System (INLS)
Joint High Speed Vessel

WPE/JHSV/HSV Comparison

<table>
<thead>
<tr>
<th></th>
<th>WestPac Express</th>
<th>JHSV</th>
<th>HSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Length</td>
<td>101m</td>
<td>103m</td>
<td>107m</td>
</tr>
<tr>
<td>Draft</td>
<td>4.3m</td>
<td>3.83m</td>
<td>3.7m</td>
</tr>
<tr>
<td>Cruise/Max Speed</td>
<td>36kts/38kts</td>
<td>35kts/43kts</td>
<td>40kts/42kts</td>
</tr>
<tr>
<td>Passengers</td>
<td>900</td>
<td>312</td>
<td>866</td>
</tr>
<tr>
<td>Vehicle/Cargo Capacity</td>
<td>33,000sqft 165 HMMWVS</td>
<td>20,000-22,000sqft 100–110 HMMWVS</td>
<td>31,000sqft 152 HMMWVS</td>
</tr>
<tr>
<td>Deadweight</td>
<td>790t</td>
<td>700t</td>
<td>800t</td>
</tr>
<tr>
<td>Range</td>
<td>1250nm</td>
<td>1200nm</td>
<td>1200nm</td>
</tr>
</tbody>
</table>

- JHSV is not a combatant, operates in a permissive environment
 - MSC standard for ATFP capabilities

Level I, Class 2 for H53/H60 helo operations
Level I, Class 4 VERTREP operations

Extensive yet flexible crew and troop accommodations with lounge, medical and mess facilities

Crew-served weapon mounts fore and aft

Large mission bay for range of military hardware, vehicles and boats

45° slewing articulated quarter ramp for rapid and efficient loading and offloading
Maritime Prepositioning Ships

T-AKE

LMSR

MLP

T-AK
MPF Enhancement Strategy

- Roll-on roll-off cargo ships, coupled with mobile landing platforms, provide key enabling capabilities to fully leverage existing MPS capabilities
 - Selective offload
 - Increased ship stowage capacity allows for reconfigured loads across MPSRON for selective offload
 - In-stream offload of Large, Medium Speed RO/RO (LMSR) with Mobile Landing Platform (MLP)
 - Increased connector lift capacity with MLP
 - Increased ship-to-shore throughput
Mobile Landing Platform (MLP)

- 34 berths
- Skin-to-skin ramp and fenders
- 15 knots, 9,500 nm
- 3 LCAC lanes with services
- 25,000 ft² elevated vehicle stowage deck module
- 25,000 ft² elevated vehicle stowage deck module
- Utility Services (limited) for accommodation barges/modules
- Tankage capacities
 - 100,000 gal Potable Water/
 - 380,000 gal JP5

- LMSR skin-skin moored alongside MLP
- Vehicles transfer from LMSR to MLP via side port ramp and onto LCACs
- LCACs maneuver forces ashore

- FLO/FLO
USNS Montford Point (MLP 1)

Keel Laying: January 2012 -- Projected Launch: November 2012
MPF T-AKE: Selective Offload

Plus Operational Reach
MPF Squadron Composition
FY13

MPSRON 2
DIEGO GARCIA

- STOCKHAM
- SEAY
- LEWIS & CLARK
- BUTTON
- MONTFORD POINT

MPSRON 3 GUAM / SAIPAN

- SISLER
- T-AKE
- DAHL
- SACAGAWEA
- WILLIAMS
- MONTFORD POINT

- LUMMUS
- BOBO
- GLENN

MLP
Experimentation and Demonstration Opportunities

<table>
<thead>
<tr>
<th>Dates</th>
<th>Exercise</th>
<th>OCE</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 12</td>
<td>Coconut Grove</td>
<td>PACOM</td>
<td>Maldives</td>
</tr>
<tr>
<td>Feb 13</td>
<td>Dawn Blitz</td>
<td>PACOM</td>
<td>CA</td>
</tr>
<tr>
<td>Feb 13</td>
<td>Native Fury</td>
<td>CENTCOM</td>
<td>TBD</td>
</tr>
<tr>
<td>Feb 13</td>
<td>Freedom Banner</td>
<td>PACOM</td>
<td>Philippines</td>
</tr>
<tr>
<td>Feb 13</td>
<td>MPF Ex</td>
<td>SOUTHCOM</td>
<td>Gitmo</td>
</tr>
<tr>
<td>Apr 13</td>
<td>Bold Alligator</td>
<td>FFC/MFC</td>
<td>VA</td>
</tr>
<tr>
<td>Apr 13</td>
<td>Immediate Response</td>
<td>EUCOM</td>
<td>Croatia</td>
</tr>
<tr>
<td>May 13</td>
<td>Africa Lion</td>
<td>AFRICOM</td>
<td>Morocco</td>
</tr>
<tr>
<td>Jun 13</td>
<td>Seabreeze</td>
<td>EUCOM</td>
<td>CA</td>
</tr>
<tr>
<td>Jul 13</td>
<td>Dawn Blitz</td>
<td>PACOM</td>
<td>TBD</td>
</tr>
<tr>
<td>Aug 13</td>
<td>Pacific Horizon</td>
<td>PACOM</td>
<td>CA</td>
</tr>
<tr>
<td>Feb 14</td>
<td>RIMPAC</td>
<td>PACOM</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Amphibious Ship
C2 Requirements

Tier 1
- Delivered Annually

Tier 2
- 4 Enclosures
 - Required Afloat Capabilities
 - Network and Telephony Matrix
 - MAGTF Afloat Baseline
 - Gaps List

DEPARTMENT OF THE NAVY

AMPHIBIOUSship C2 REQUIREMENTS

Tier 1
- Delivered Annually

Tier 2
- 4 Enclosures
 - Required Afloat Capabilities
 - Network and Telephony Matrix
 - MAGTF Afloat Baseline
 - Gaps List

Tier 3

Subject: 2010 AFLAT MARINE AIR GROUND TASK FORCE (MAGTF) COMMAND AND CONTROL, COMMUNICATIONS, AND COMPUTERS (C4) REQUIRED CAPABILITIES (ARANC) LETTER

3. Mitigating the challenges of command and control of naval forces is crucial to the success of our nation and our Naval Service. We stand ready to work with you and your staff in meeting the technological and fiscal challenges in implementing these enduring requirements.

Copy to:
- OICM (AVN, C4, I, PAR, IAL, IP60)
- CNO (N2/6, N3, N4, N5, N7)
- FPO SHIPS
- DASH SHIPS
- CMGR NAVCOM
- CMGR MARCOM
- CMGR NAV AIRCOM
- CMGR NAV AIRCOM
- CMGR NAVCOM

Deputy Commandant for Combat Development and Integration

To: Deputy Chief of Naval Operations (Integration of Capabilities and Resources)

Subj: 2010 AFLAT MARINE AIR GROUND TASK FORCE (MAGTF) COMMAND AND CONTROL, COMMUNICATIONS, AND COMPUTERS (C4) REQUIRED CAPABILITIES (ARANC) LETTER

Ref: (a) 2008 ARANC Letter dtg 02 Dec 2008
(b) 2010 MAGTF Capabilities List (MCL)
(c) OPMNAVST 3001.XX Series – Required Operational Capabilities (ROC) and Projected Operational Environment (POE) series documents for “L” class amphibious ships.

Enc1: (1) Afloat MAGTF C4 Required Capabilities List
(2) Network and Telephony Matrix
(3) Afloat MAGTF C4 Capability Gaps List

1. The purpose of this document is to promulgate Marine Corps afloat C4 required capabilities and shortfalls as they relate to amphibious ships, maritime prepositioning ships, and joint high speed vessels.

2. This document supersedes reference (a) as the baseline for required afloat MAGTF C4 capabilities and associated gaps. It does not include requirements for the Navy Support Element. This letter contains four enclosures.

 a. Enclosure (1) “Afloat MAGTF C4 Required Capabilities List” articulates C4 capabilities required to support Marine Corps war-fighting functions and is derived from reference (b) and reference (c).

 b. Enclosure (2) “Network and Telephony Matrix” lists network and telephone requirements by type (secure, non-secure, etc.) by vessel class and space.

 c. Enclosure (3) “Afloat MAGTF C4 Capability Gaps List” is intended to direct near term efforts of the resource sponsors associated with a given capability.
Integrating the MAGTF into the Sea Base

- Increased Square
- Increased Height
- Increased Weight
- Increased Quantity
- Navy / MAGTF Ship Integration
- Increased Cube
HMMWV To JLTV

HMMWV (soft doors)
Measured = 109 SqFt

JLTV
Measured = 147 SqFt

70% BROKEN STOWAGE FACTOR

63%
Additional Lashings

MTVR at 39,000 lbs
(unarmored cab with mobile load)
Requires 4 tie-down points

MTVR at 48,000 lbs
(armored cab with mobile load)
Requires 8 tie-down points
MTVR Stowage in LPD 17
Main Vehicle Stow

164”
127”
101”

Maximum stowage in MVS Forward is 151”
Future vs Legacy Comparison

Aircraft Overlay

<table>
<thead>
<tr>
<th>Marine Fighter Attack</th>
<th>Marine Medium Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-35B</td>
<td>AV-8B</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Length / Width / Height</td>
<td>Length / Width / Height</td>
</tr>
<tr>
<td>52.26' / 35' / 14.14'</td>
<td>47.44' / 30.33' / 11.65'</td>
</tr>
<tr>
<td>Spot Factors</td>
<td>Spot Factors</td>
</tr>
<tr>
<td>F-35B: Flight Deck (2.96); Hangar Deck (2.69)</td>
<td>MV-22B: Flight Deck (1.75); Hangar Deck – Folded (2.92), Maint Spread (5.00)</td>
</tr>
<tr>
<td>AV-8B: Flight Deck (2.57); Hangar Deck (1.94)</td>
<td>CH-46E: Flight Deck (1.32); Hangar Deck (1.30)</td>
</tr>
</tbody>
</table>

Heavy Lift Helicopter

<table>
<thead>
<tr>
<th>CH-53K</th>
<th>CH-53E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Length / Width / Height (Folded)</td>
<td>Length / Width / Height (Folded)</td>
</tr>
<tr>
<td>60.76' / 28.42' / 18.5'</td>
<td>60.5' / 28.42' / 18.5'</td>
</tr>
<tr>
<td>Spot Factors</td>
<td>Spot Factors</td>
</tr>
<tr>
<td>CH-53K: Flight Deck (2.41); Hangar Deck (3.18)</td>
<td>AH-1Z: Length: 58.3', Width: 15.1', Height: 14.4', Spot Factors: Flight Deck (1.29), Hangar: (1.59)</td>
</tr>
<tr>
<td>CH-53E: Flight Deck (2.41); Hangar Deck (3.50)</td>
<td>AH-1W: Length: 58', Width: 10.9', Height: 14.2', Spot Factors: Flight Deck: (1.01), Hangar: (1.13)</td>
</tr>
<tr>
<td>(Folded)</td>
<td>(Folded)</td>
</tr>
<tr>
<td>63' / 18.4' / 18.2'</td>
<td>58.4' / 15.4' / 14.7'</td>
</tr>
</tbody>
</table>

Marine Light Attack / Utility

<table>
<thead>
<tr>
<th>AH-1Z</th>
<th>AH-1W</th>
<th>UH-1Y</th>
<th>UH-1N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Width</td>
<td>Height</td>
<td>Spot Factors</td>
</tr>
<tr>
<td>58.3'</td>
<td>15.1'</td>
<td>14.4'</td>
<td>(1.29)</td>
</tr>
<tr>
<td>58'</td>
<td>10.9'</td>
<td>14.2'</td>
<td>(1.01)</td>
</tr>
<tr>
<td>58.4'</td>
<td>15.4'</td>
<td>14.7'</td>
<td>(1.28)</td>
</tr>
<tr>
<td>57.33'</td>
<td>9.1'</td>
<td>12.9'</td>
<td>(0.89)</td>
</tr>
</tbody>
</table>

Note: All dimensions are approximate and subject to manufacturer specifications.
Holistic View
MAGTF Requirements

MEU Ground Vehicles and Equipment

M151/trlr 3,000 lb 168
M35 2.5T 12,580 lb 28
M48 MBT 104,000 lb 4
AAV 52,000 lb 12

CH-46A3 13,000 lb 12

AV-8A3 12,200 lb 6

CH-53A3 22,900 lb 4

MEU Aircraft

Ground Vehicles & Equipment Average 3.4 x Heavier

M998/armor1 10,300 lb 201
MTVR MK232 41,953 lb 30
M1A1 135,200 lb 4

AV87A1 55,300 lb 12

MV-22B3 33,140 lb 12

AV-8B3 13,968 lb 6

CH-53E3 33,228 lb 4

CH-53K3 33,228 lb 6

MEU Totals

1,109 tons

Notes:
1. Table of Equipment increase over 1970s unit structure
2. Curb Weight + Cross Country Payload
3. Aircraft Empty Weight

Notes: Increased Weights/Density Impact Deck Strength, Ship Stability.....
Navy-MAGTF
Ship Integration Center
Baseline MAGTFs

Baseline MEB Organization*

![Diagram of Baseline MEB Organization](image)

Baseline MEU Organization*

![Diagram of Baseline MEU Organization](image)

Baseline MEB
AE Lift Requirement*

* Navy Support Element Not Included

<table>
<thead>
<tr>
<th></th>
<th>Pers</th>
<th>Vehicles (SqFt)</th>
<th>Cargo (CuFt)</th>
<th>Aircraft (MH-60 Eq)</th>
<th>JP-5 (Gal)</th>
<th>Weight (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>677</td>
<td>16,535</td>
<td>51,391</td>
<td></td>
<td>79,191</td>
<td>2,464</td>
</tr>
<tr>
<td>GCE</td>
<td>5,630</td>
<td>263,413</td>
<td>502,557</td>
<td>1,086,522</td>
<td>35,199</td>
<td></td>
</tr>
<tr>
<td>ACE</td>
<td>2,982</td>
<td>21,496</td>
<td>288,087</td>
<td>402,29</td>
<td>13,824</td>
<td></td>
</tr>
<tr>
<td>LCE</td>
<td>5,249</td>
<td>135,053</td>
<td>64,198</td>
<td>264,032</td>
<td>13,114</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10,838</td>
<td>436,482</td>
<td>906,232</td>
<td>402,29</td>
<td>6,925,454</td>
<td>64,600</td>
</tr>
</tbody>
</table>

Baseline MEU Lift Requirement*

<table>
<thead>
<tr>
<th></th>
<th>Pers</th>
<th>Vehicles (SqFt)</th>
<th>Cargo (CuFt)</th>
<th>Aircraft (MH-60 Eq)</th>
<th>JP-5 (Gal)</th>
<th>Weight (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>307</td>
<td>7,896</td>
<td>22,978</td>
<td></td>
<td>21,710</td>
<td>657</td>
</tr>
<tr>
<td>GCE</td>
<td>1,284</td>
<td>42,549</td>
<td>137,491</td>
<td>191,853</td>
<td>5,649</td>
<td></td>
</tr>
<tr>
<td>ACE</td>
<td>588</td>
<td>5,671</td>
<td>54,905</td>
<td>90,78</td>
<td>1,032,483</td>
<td>1,399</td>
</tr>
<tr>
<td>LCE</td>
<td>288</td>
<td>24,028</td>
<td>8,446</td>
<td>47,894</td>
<td>2,094</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,447</td>
<td>80,144</td>
<td>223,819</td>
<td>90,78</td>
<td>1,293,939</td>
<td>9,799</td>
</tr>
</tbody>
</table>

Amphibious warship inventory requirements are built on 2.0 MEB AE OPLAN requirement
Dense Pack Access Retrieval & Transit (DPART)

Background
- Written endorsements from seven organizations, incl. BIC, MARFORPAC, MARCORPSYSCOM, RS-JPO, MSC, USA-CoT, and USA-LIA
- Potential teaming with TARDEC on battery and autonomous sensor technologies
- Project decision timing:
 - 22 May 2012 – Candidate Nomination Bd (unanimous approval)
 - 20 Jul 2012 - COCOM/Service Rankings Due
 - 8 Aug 2012 – Candidate Decision Board
 - 1 Oct 2012 – Start JCTD
- Candidate for FY-12 early start (OSD Funds)

Innovates SSARS
- SID-led FY13 JCTD proposal with NSWC-CD and UASACE-ERDC assist; and USPACOM & USTRANSCOM Co-Sponsors
- Proposing a 30 Month JCTD
- Innovates SSARS technologies (C-LMS, SPIDR and ORLAMS)
- Produces prototypes: Wheeled C-LMS; Amphibious Naval Transport (ANT) – Large Wheeled Vehicle (LWV); ANT-Army (ANT-AVN), Common Remote Controller

Container Solution
- Builds on lifting & omni-directional maneuvering technology developed under SSARS program
- Wheeled Container Lift and Maneuvering System (C-LMS)

Large Wheeled Vehicle & Aviation Solutions
- The ANT AVN and LWV variants innovate technologies taken from the SPIDR and ORLAMS technology demonstrations to allow for omni-directional movement of aircraft and large vehicles aboard ships.

Future
- Written endorsements from seven organizations, incl. BIC, MARFORPAC, MARCORPSYSCOM, RS-JPO, MSC, USA-CoT, and USA-LIA
- Potential teaming with TARDEC on battery and autonomous sensor technologies
- Project decision timing:
 - 22 May 2012 – Candidate Nomination Bd (unanimous approval)
 - 20 Jul 2012 - COCOM/Service Rankings Due
 - 8 Aug 2012 – Candidate Decision Board
 - 1 Oct 2012 – Start JCTD
- Candidate for FY-12 early start (OSD Funds)
Seabasing Continuing Education

• Senior Leader Engagement
 – Seabasing Brief to Commander and Key Staff

• Seabasing Education Forum
 – Mobile Team sharing Seabasing Academics

• Seabasing Symposium
 – Annual programmatic update

• Feedback From the Field
 – MEU Observations
 – Lessons Learned
 – Requirements Discovery
Seabasing: Assured Capability for Expeditionary Warfare

Task organized forces to meet CCDR mission requirements

Amphibious Fleet

Connectors

Maritime Prepositioning Force

MAGTF

Carrier Strike Group & Expeditionary Strike Group

Combat Logistics Force Ships

Coalition Force & Sister Service Ships

... mission drives organization
Sea-based Container Handling

Initial Operating Capability!
Seabasing Integration Division

Points Of Contact

ROW WELL...AND LIVE!

<table>
<thead>
<tr>
<th>Branch</th>
<th>Contact</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Mr. Jim Strock</td>
<td>james.strock@usmc.mil</td>
<td>703-784-6094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deputy Director</td>
<td>LtCol Todd Sermarini</td>
<td>anthony.sermarini@usmc.mil</td>
<td>703-784-6684</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations Branch</td>
<td>LtCol Daren Brown</td>
<td>daren.brown@usmc.mil</td>
<td>703-432-8144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expeditionary Ship Capabilities Branch</td>
<td>Mr. Rick Betsinger</td>
<td>rick.betsinger@usmc.mil</td>
<td>703-784-6038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectors & Doctrine Branch</td>
<td>Mr. Dave Groves</td>
<td>david.groves@usmc.mil</td>
<td>703-784-6227</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGTF Planning Branch</td>
<td>Mr. Jim Horzempa</td>
<td>james.horzempa@usmc.mil</td>
<td>703-432-8354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>