Integration of Experimental and Textual Data for Biosurveillance

BOBBIE-JO WEBB-ROBERTSON
BJ@PNNL.GOV

August 28, 2012

Biosurveillance Conference, Washington, DC
Motivation

Investigators/analysts need “confidence” metrics to enable justified and rapid decision making.
Motivation

Investigators/analysts need “confidence” metrics to enable justified and rapid decision making.
Investigators/analysts need "confidence" metrics to enable justified and rapid decision making.
Investigators/analysts need “confidence” metrics to enable justified and rapid decision making.
Investigators/analysts need “confidence” metrics to enable justified and rapid decision making.
Motivation

Investigators/analysts need “confidence” metrics to enable justified and rapid decision making.
Integration Problem

How do we tie together the “experimental” and “intelligence” signatures to help the analyst/investigator?
How do we tie together the “experimental” and “intelligence” signatures to help the analyst/investigator?

Challenge

- Research is compartmentalized into domains
- Statistical confidence metrics from multiple sources of evidence have not been well defined for bioforensics/biosurveillance
Bayesian Statistics Naturally fits forensic and surveillance type problems
Outcome is conditionally related to the sources of evidence
Bayesian Statistics Naturally fits forensic and surveillance type problems

Outcome is conditionally related to the sources of evidence

Bayes theorem

\[
P(O|E) = \frac{P(E|O)P(O)}{P(E)}
\]
Bayesian Statistics Naturally fits forensic and surveillance type problems

Outcome is conditionally related to the sources of evidence

Bayes theorem

\[P(O | E) = \frac{P(E | O) P(O)}{P(E)} \]

- **Posterior**
- **Likelihood**
- **Prior**

Probability that a person become sick with the flu given (O) their age (E)
Bayesian Statistics Naturally fits forensic and surveillance type problems

Outcome is conditionally related to the sources of evidence

Bayes theorem

\[P(O \mid E) = \frac{P(E \mid O)P(O)}{P(E)} \]

Probability that a person become sick with the flu given \((O)\) their age \((E)\)

Bayes network

\[P(O \mid E, G) \propto P(E \mid G, O)P(G \mid O)P(O) \]

Probability that a person become sick with the flu given \((O)\) their age \((E)\) and gender \((G)\)
Approach – Bayesian networks

Allow:
- Integration of heterogeneous data types
- Multiple complex relationships
- Incomplete information

Yields:
- Probabilistic measure of the outcome
- Probabilistic Interrogation of intermediate nodes

\[
P(C | A, B)P(B | A)P(A)
\]
Microbial Forensics

Microorganism-based forensics do not offer investigators “confidence” metrics associated with the sample to gain insight into individuals or places with information pertinent to the investigation.
Prior work (Jarman et al., 2008) demonstrated that using disparate analytical measurements (D_S, D_M, D_E, D_I) of Bacillus spores could yield a predictive model of production environment (R).

$$P(R | D_S, D_M, D_E, D_I)$$

Computed using GeNle tool for visualization

August 28, 2012
Approach – Existing Experimentally deriving network (culture media recipe)
Approach – Existing Experimentally deriving network (culture media recipe)

Set Evidence for data types available
Approach – Existing Experimentally deriving network (culture media recipe)
Approach – Existing Experimentally deriving network (culture media recipe)

Probability of all recipes
Approach – Existing Experimentally deriving network (culture media recipe)

- Probability of all recipes
- Marginal Probabilities of growth components
Integration Problem – Building the Bayesian network

How can you identify institutions that have experience with the kind of culturing practice pointed to by the experimental evidence?

August 28, 2012
How can you identify institutions that have experience with the kind of culturing practice pointed to by the experimental evidence?

$P(I_j \mid D_E, D_I)$

Experimental Data Bayes Net

Prediction of culturing recipe from institution is not feasible.
How can you identify institutions that have experience with the kind of culturing practice pointed to by the experimental evidence?

\[P(I_j \mid D_E, D_I) \]

Experimental Data Bayes Net

Institutions tie to documents

Challenge to predict recipes directly from document
Integration Problem – Building the Bayesian network

How can you identify institutions that have experience with the kind of culturing practice pointed to by the experimental evidence?

Use automated text scanning (key words)

For demonstration we focus on using published journal articles in the public domain.

\[P(I_j \mid D_E, D_I) \]
Integration Problem – Building the Bayesian network

How can you identify institutions that have experience with the kind of culturing practice pointed to by the experimental evidence?

\[
P(I_j \mid D_E, D_I) = \sum_{D} \sum_{T} \sum_{R} \sum_{S} \sum_{A} P(D_E \mid A) P(D_E, D_I \mid S) P(A \mid R) P(S \mid R) \prod_{q} P(R \mid T^{(q)}) P(T^{(q)} \mid D) P(D \mid I) P(I)
\]

For demonstration we focus on using published journal articles in the public domain.
Open-source text signatures

Hand curated documents show a discriminatory pattern between culture medium recipes

Diagram showing a network of text variables with counts for each variable.
Validation

INFORMATION

- 144 total documents
 - 52 documents hand curated
 - 92 additional documents
- 165 institutions

EVALUATION

- Cross-validation (bootstrapping): 52 documents
- Area under Receiver Operating Characteristic curve (AUC)

Random Classifier will given an AUC of 0.5

Perfect Classifier will give an AUC of 1.0
AUC Statistically Higher than Random

August 28, 2012

Bayesian

0.71±0.17

Random

0.48±0.124

p-value < 1e-10

Issues with Validation

- Presumably many “false” are “true”
- Limited to the culture medias of the hand curation
Advantages of the Bayesian Network Approach

- More experimental and/or soft data streams can be added
- Modify the final probability (e.g., foreign vs. domestic, individual researchers)
- Automated approach, any number of documents (institutions, people) can be evaluated

Yields a easy to interpret confidence metric
Looking Forward: Bioforensics and Biosurveillance

- Expand to include more “who” and “where”
 - Means more nodes, types of information (e.g., social media)

- Dynamic Bayesian networks
 - Evaluate a “threat” over time

August 28, 2012
Adding non-traditional “soft” data to the existing network

How can we link in some new source of soft data, such as social media?
Adding non-traditional “soft” data to the existing network

How can we link in some new source of soft data, such as social media?

Probably doesn’t make sense to link through culture recipe
Adding non-traditional “soft” data to the existing network

How can we link in some new source of soft data, such as social media?

We need domain experts and statisticians working together

Probably doesn’t make sense to link through culture recipe
Adding non-traditional “soft” data to the existing network

One approach would be to add a “warning” node

- Compute the probability that there is a threat (W) given the “individual” and data source (D_{SM})
Adding non-traditional “soft” data to the existing network

One approach would be to add a “warning” node

- Compute the probability that there is a threat (W) given the “individual” and data source (D_{SM}).
Adding non-traditional “soft” data to the existing network

One approach would be to add a “warning” node:

- Compute the probability that there is a threat (W) given the “individual” and data source (D_{SM})
- Link individuals/institutions to social media

$P(W \mid I, D_{SM})$

$P(D_{SM} \mid I)$
Adding non-traditional “soft” data to the existing network

\[
P(I_j \mid D_E, D_I, D_{SM}) = \frac{\sum \sum P(D_E, D_I \mid I) P(W \mid I, D_{SM}) P(D_{SM} \mid I) P(I)}{\sum \sum \sum P(D_E, D_I \mid I) P(W \mid I, D_{SM}) P(D_{SM} \mid I) P(I)}
\]
Generally, integration of multiple ‘orthogonal’ streams of data improves predictive capability.

$P(\text{Alert} \mid E_1, E_2, E_3)$

$P(\text{No Alert} \mid E_1, E_2, E_3)$
Adding a dynamic component

Generally, integration of multiple ‘orthogonal’ streams of data improves predictive capability

Automated nature of the network allows continual update of the probability at rate of the fastest source of data.

Evidence Nodes

- Enters at rate a
- Enters at rate b
- Enters at rate c

Internal Nodes

Detection node

$$P(\text{Alert} \mid E_1, E_2, E_3)$$

$$P(\text{No Alert} \mid E_1, E_2, E_3)$$

Webb-Robertson et al., (2009) PSB
Adding a dynamic component

Integration can identify an “alert” where individual data streams may not
Integration can identify an “alert” where individual data streams may not...
Integration can identify an “alert” where individual data streams may not
Adding a dynamic component

Integration can identify an “alert” where individual data streams may not
Acknowledgments

Funding
- Department of Homeland Security
- LDRD (Signature Discovery Initiative)

Staff
- B Webb-Robertson (statistics)
- Courtney Corley (informatics/text analytics)
- Helen Kreuzer (bioforensics/experimentation)
- Lee Ann McCue (microbiology/Computational Biology)
- Karen Wahl (bioforensics/experimentation)
Bobbie-Jo Webb-Robertson
Senior Research Scientist
Computational Biology & Bioinformatics
Pacific Northwest National Laboratory

902 Battelle Blvd / J4-33
Richland, WA 99352
Tel: (509) 375-2292
bj@pnnl.gov