Cloud-Based Computational Bio-surveillance Framework for Discovering Emergent Patterns From Big Data

Arvind Ramanathan

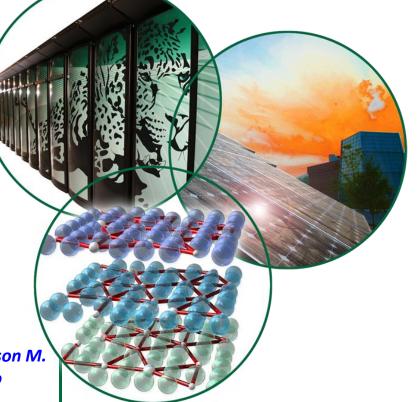
<u>ramanathana@ornl.gov</u>

Computational Data Analytics Group, Computer Science & Engineering Division, Oak Ridge National Lab, Oak Ridge, TN

Dr. Chakra S. ChennubhotlaUniversity of
Pittsburgh

Shannon QuinnUniversity of
Pittsburgh

Dr. Jason M. CastroBates
College



Bio-surveillance from Big Data: Big Challenges

We generate 2 quintillion bytes (2 x 10¹⁸) of data every day. (IBM)

Experiments

- genome scale experiments
- proteomics
- · structural biology,
- · clinical studies

Simulations



- disease **Information** models communication
- molecular dynamics
- social networks

Archives

Social Media

Sensors

Data → Discovery → Insights

- twitter, communicable diseases
 archives of health records
 - VERDE (Visualizing the electric grid)

Resiliency Analysis and Coordination System

- environmental
- monitors,
- weather/climate
- monitors
- hospital sensors,
- other sources

Zero Day Attack Detection

CMS Analytics (Decision from Big Data)

The Challenge Enable Discovery

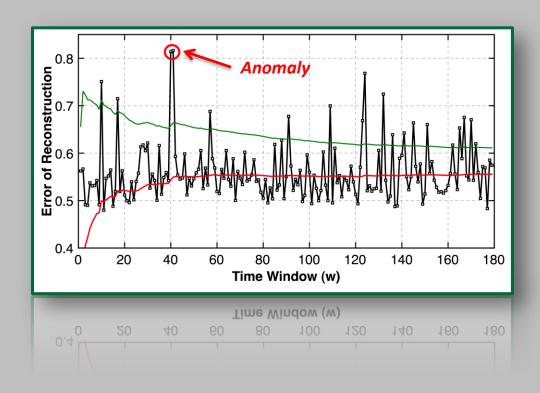
Deliver the capability to mine, search and analyze this data in near real time

Analyzing Big Data from Bio-surveillance...

What is this talk about ...

- Suite of statistical and machine learning tools for:
 - discovering inherent statistical structure of domain specific big data
 - providing testable hypotheses ("actionable insights")

- Challenges faced in developing a computational infrastructure:
 - Volume/Velocity
 - Scaling algorithms



Part 1: Online Event Detection

- Spatio-temporal correlations
- Dynamical clustering

Motivation: Detecting spatio-temporally correlated patterns in real-time data streams (Twitter)

- Which geographic regions exhibit correlated patterns in twitter patterns?
 - Indicative of emergent patterns in spread of disease/ outbreak
 - Can be across diseases or regions or along time
- At what time-points do these patterns change?
 - Anomalies indicative of sudden surges in infections

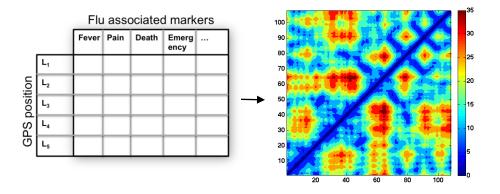
Varying patterns in disease association.

Neoformix: Visualizing Twitter data

U L₅

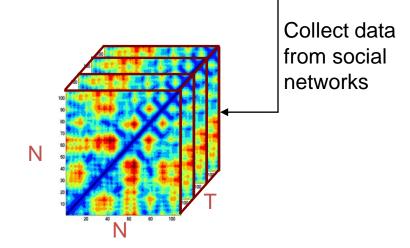
Tensor representation for text data streams

 Conceptually the data is a collection of matrices



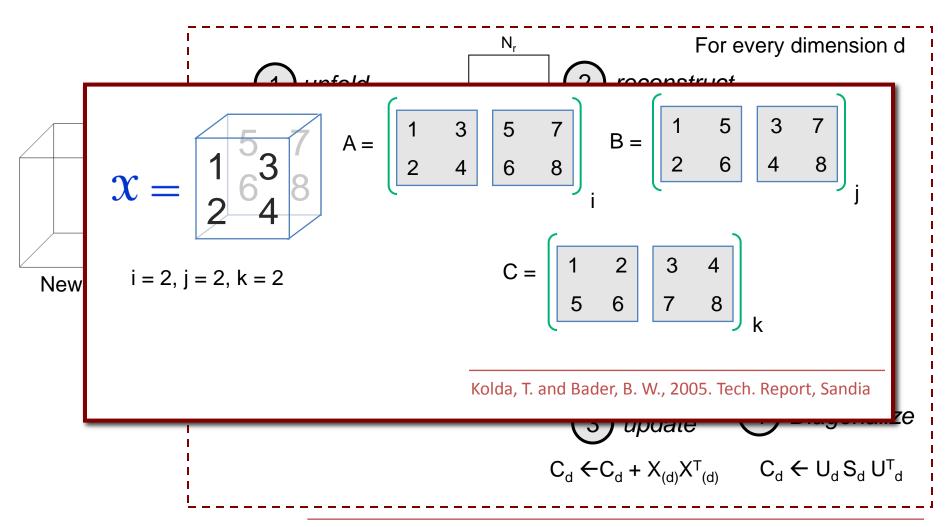
 Conveniently represented as a tensor

Tensors are N-dimensional matrices, that are useful to capture multi-way dependencies



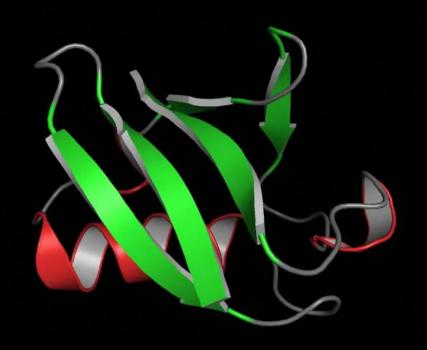
3D tensor of outbreak terms + locations evolving over time

Online Tensor Analysis



Ramanathan, A., Agarwal, P.K., Kurnikova, M. and Langmead, C., RECOMB 2009. Sun, J., Faloutsos, C., and Kolda, T., KDD 2006.

Translating to a small world!



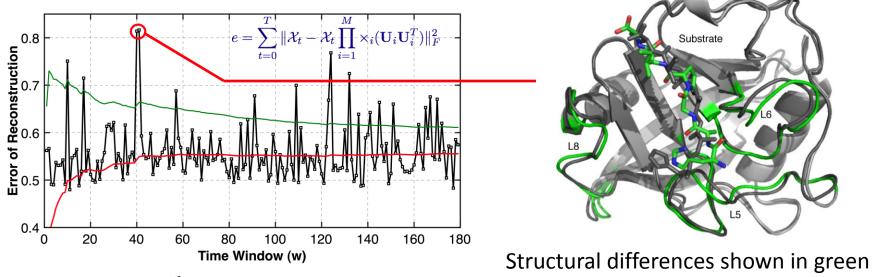
- Which regions of the molecule are moving together?
- At which time-points are the spatio-temporal patterns of motions changing?

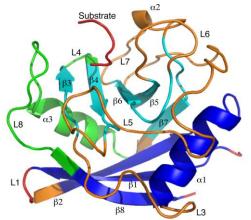
Managed by UT-Battelle for the U.S. Department of Energy

Time =

Data → Insights → Discovery:

Time-points where spatio-temporal correlations change can be used to control simulations





Clustering spatial regions in the enzyme showing similar patterns of motion

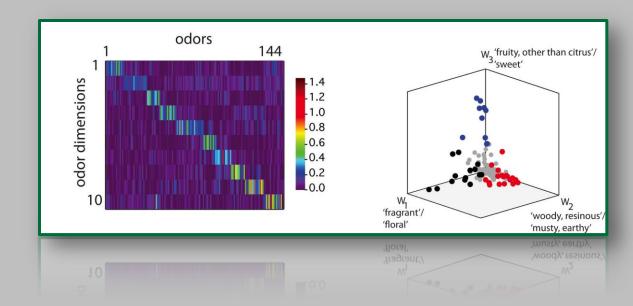
Key Contributions

An *online* tool for data mining:

- 1. Anomaly detection:
 - time points where social media patterns change
 - Can be used to track disease outbreak

- 2. Spatio-temporal pattern discovery:
 - cluster geographical regions based on media patterns

3. Data summarization



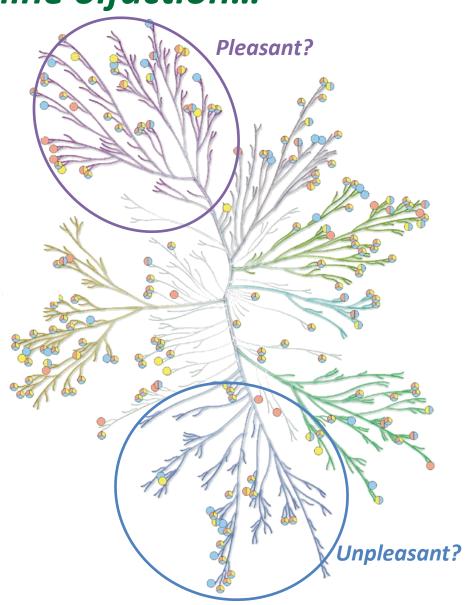
Part 2: Discovering inherent statistical structure in big data

- Organizing high dimensional spaces
- Odor perception

Motivation: Towards machine olfaction...

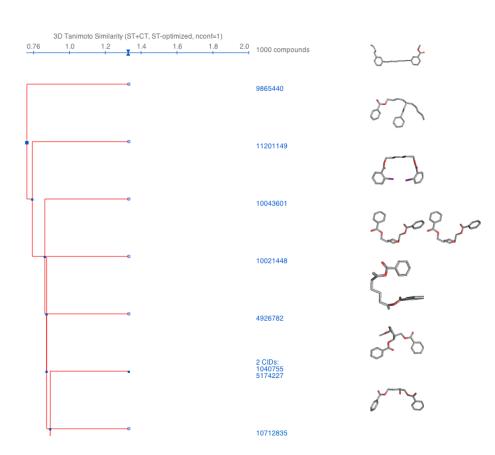
Odor perception:

- What is the perceptual space of the human olfactome?
- 31 million molecules from Pubchem!!
 - Big Data: How to organize this space?
- We don't have this organization:
 - Can we build this from data?
 - Statistical characteristics from both psychophysics & chemical spaces



Using semi-supervised learning to "odor" label the Pubchem

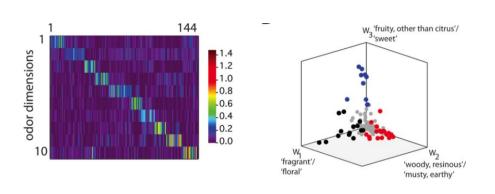
- Label small portion of the data with odor percepts
 - Derive physio-chemical features from labeled data
- Graph-kernel approaches to quickly compare compounds
- Propagate labels on successively to larger data sets (flavornet, superscent)
- Test / Validate / Refine

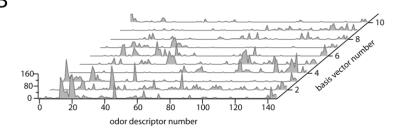


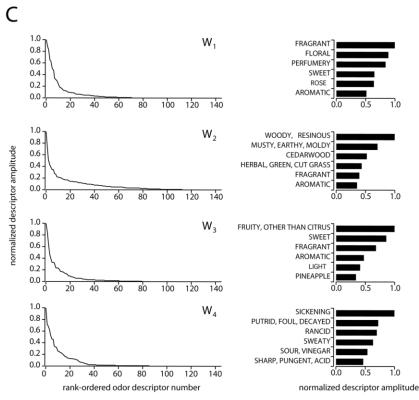
Castro, J.B., Ramanathan, A., Chennubhotla, C.S. (2012) PLoS One (in preparation)

Building a perceptual model of odors on Atlas of **Odor Chemical Percepts (AOCP)**

- 144 odors; ~150 odor descriptors
- Use non-negative matrix factorization for dimensionality reduction
- Rigorous cross validation



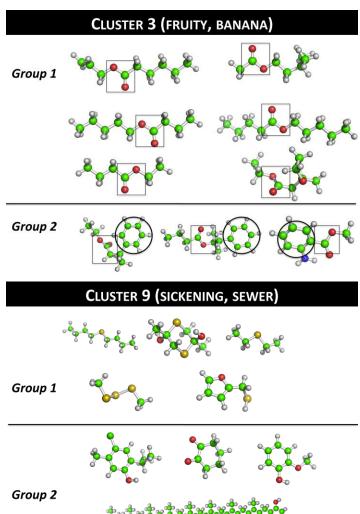




Data → Insights → Discovery

Odors with similar perception share unique physio-chemical signatures

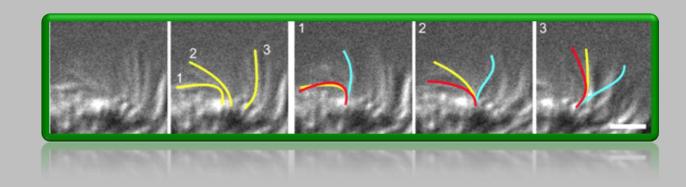
- Fruits and sewer have distinct chemical features:
 - nRCOOCR
 - -nS
- Identified automatically from over 1600 physiochemical features



Key Contributions & Future Work

A machine learning framework to relate chemicals to their odor percepts:

- Discovery of underlying statistical structure within large-scale datasets
 - how do people perceive odors?
 - linking "odor perception" to "chemical signatures"
- Organizing odors into a perceptual frame of reference:
 Olfactome: using novel machine learning tools
 - integration with psycho-physics experiments
 - expanding the compounds to include a larger chemical repertoire

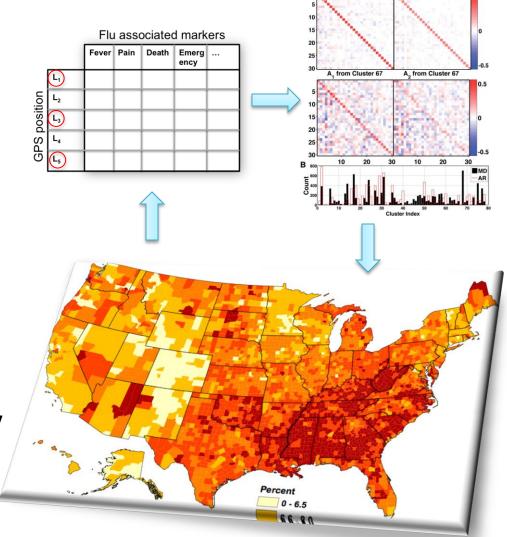


Part 3: Moving to the cloud...

- Organizing high dimensional spaces
- Auto-regressive models
- Bio-medical applications

Motivation: Automate detection of patterns from disparate, distributed data

- Data: Twitter Feed / Social media
 - Globally distributed data
 - Large volume
- Temporal models:
 - patterns in disease spread
- Generative models:
 - predicting how disease may spread



Bio-surveillance and the Cloud

Bio-surveillance data

is BIG and NOISY

requires repetitive analysis in chunks

modeling involves linear algebra and statistics

Example: Biological Visualization & Data Analytics for **Disease Diagnostics**

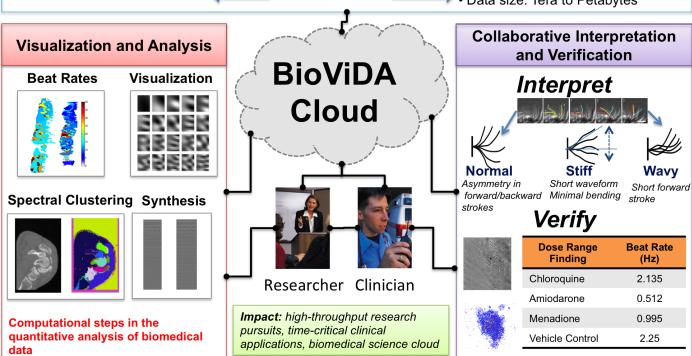
Data Transfer and Integration

- Ciliary motion data per patient: order of gigabytes
- Large-scale, longitudinal study will generate terabytes of data
- Patient data collected so far in Dr. Lo's lab: ~200 controls and ~200 diseased

Drug-Discovery Ciliary Motions

- Image/Video data in 2D, 3D and 4D
- 20-100 drugs/biological agents at multiple concentrations, for multiple time points in live cells.
- For each of the 2,000-200,000 treatments, profile 1,000-10,000 cells
- Data size: Tera to Petabytes

- Data@ University of Pittsburgh:
 - Dr. Cecilia Lo's lab
 - **Drug-discovery** Institute
- **Compute Cloud:** Qloud@CMU-Qatar, Dr. Majd Sakr



Summary

- An overview of a computational infrastructure that implements scalable machine learning algorithms to:
 - discover inherent structure from various sources of biosurveillance data
 - provide near real-time feedback for end-users on emerging patterns
- *Challenges* include:
 - Seamlessly fusing multiple data sources
 - Standards across the globe differ!

Acknowledgements

Computational Data Analytics Group

- Dr. Thomas Potok (Group Leader)
- Dr. Laura Pullum
- Dr. Bryan Gorman
- Dr. Mallikarjun Shankar

Computer Science Research

- Dr. Pratul K. Agarwal

Questions/ Comments: ramanathana@ornl.gov

