Railgun Overview & Testing Update

NDIA Joint Armaments Conference: Unconventional & Emerging Armaments Session

16 May 2012

Mr. Charles R. Garnett
Program Manager, NSWC Dahlgren
How Railgun Works

Operating Principle

1. Electrical energy stored in capacitor bank

2. Switch closes, current flows through cables, rails & armature

3. Force from magnetic field and armature current pushes projectile down barrel

4. Sabot and armature discards

Cross-Section

Lorentz Force = Current (J) X Magnetic Field (B)

or

Lorentz Force = 1/2 Inductance Gradient (L') * Current (I)^2
Distribution A:
Approved for Public Release
Distribution is Unlimited
Railgun Operational Impact

- **Wide Area Coverage**
 - Increased speed to target

- **Reduces Cost per Kill**
 - Lower Unit Cost
 - Lower handling cost

- **Enhances Safety**
 - No risk of sympathetic detonation
 - Simplified storage, transportation and replenishment
 - Reduced collateral damage
 - No unexploded ordnance on battlefield

- **Reduces Logistics**
 - Eliminates gun powder trail
 - Deep magazines

- **Multi-Mission Capability**
 - Surface Warfare
 - Missile Defense
 - Long Range Fires
 - Direct Fire
 - ASuW

Multi-Mission Capable for Offense and Defense
Naval Railgun – Key Elements

Launcher
- Multi-shot barrel life
- Barrel construction to contain rail repulsive forces
- Scaling from 8MJ (state of the art) to 32MJ
- Thermal management techniques
- M&S – Represent interaction between bore and projectile

Projectile
- Dispensing and Unitary Rounds
- Gun launch survivability
 - 20-45 kG acceleration
 - Thermal Risk Management
- Hypersonic guided flight for accuracy
- Lethality mechanics

Pulse Forming Network (PFN)
- Energy Density
- Rep rate operation & thermal management
- Switching

Ship Integration
- Dynamic Power Sharing
- Space and Weight
- Thermal and EM Field Management
EM Railgun INP Phase I

Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY05</td>
<td>Program Initiation August 2005</td>
</tr>
<tr>
<td>FY06</td>
<td>Initial 8MJ Test Capability</td>
</tr>
<tr>
<td>FY07</td>
<td>World Record Launch 10MJ</td>
</tr>
<tr>
<td>FY08</td>
<td>Initial 16MJ Test Capability</td>
</tr>
<tr>
<td>FY09</td>
<td>S&T Go No-Go Decision Point</td>
</tr>
<tr>
<td>FY10</td>
<td>32 MJ Launcher 100 Shot Bore Life Demo</td>
</tr>
<tr>
<td>FY11</td>
<td>32 MJ Launcher 100 Shot Bore Life Demo</td>
</tr>
</tbody>
</table>

Launcher Bore Life Development

- **32MJ Lab Gun Bore Life Development**

Advanced Containment Development

- **Concept Designs**
- **BAE**
- **General Atomics**

Pulsed Power System Development

- **For Launcher Testing 100MJ Capacitor Bank**
- **General Atomics**

Integrated Launch Package Development

- **Boeing**
- **Draper**
- **Government**
- **Concept Trades**
- ** Projectile Baseline Design & Critical Component Development**
- **Baseline Design**
- **Unitary Lethality Demo**
- **Dispense Demo**
- **Critical Component Demos**
- **Integrated Launch Package (ILP) Demos**

Distribution A: Approved for Public Release Distribution is Unlimited
Progress FY05 – FY11

- Muzzle energy:
 - From 6MJ to 32MJ
- Bore Life
 - From 10s to 100s
 - Multiple configurations & materials
- Industry Launcher Prototypes
 - From concept to hardware
- Pulsed power
 - 2.5X increase in energy density
 - Multi-shot capable design
- Projectile
 - From slugs & sand catch
 - Flight bodies on open range
- Mission
 - From Land Attack
 - To Multi-Mission Initiative
Industry Launcher Prototypes

BAE SYSTEMS
U.S. NAVAL ELECTROMAGNETIC RAILGUN PROTOTYPE LAUNCHERS

GENERAL ATOMICS
Distribution Statement A:
Approved for Public Release.
Distribution is Unlimited.
HE versus KE Projectiles

High Explosive (HE) Warhead

- Blast Overpressure
- Large Area of Fragment Spray
- High Collateral Damage

Kinetic Energy (KE) Projectile

- No Blast Overpressure
- Focused Fragment Pattern
- Minimal Collateral Damage
Projectile Dispense

Gun Launch
Pulsed Power at the Electromagnetic Launch Facility, Dahlgren, VA
EM Railgun INP Phase II

Rep-Rate Pulsed Power

<table>
<thead>
<tr>
<th></th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrication & Install</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rep Rate Lab Launcher with Auto-Loader

<table>
<thead>
<tr>
<th></th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabrication & Install</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Rep-Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep-Rate Demo (Enables 100+ NM application)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rep Rate Industry Launcher

<table>
<thead>
<tr>
<th></th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary – Detail Design and Fabrication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Launcher Rep-Rate Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INP II Focused on Rep-Rate and Thermal Management
Summary

• Naval EM Railgun is a “Navy after Next” Game Changer

• Risk Mitigation
 – Barrel Life Development
 – Advanced Containment Launchers – Competitive solutions
 – Critical Projectile Components
 – Understanding Ship and Weapons System Integration Requirements

Challenges Understood and Being Addressed
Mr. Charles R. Garnett (Program Manager)
Naval Surface Warfare Center, Dahlgren
6210 Tisdale Road, Suite 134
Dahlgren, VA 22448
(540) 653-7113
charles.r.garnett@navy.mil

Ms. Vanessa Lent
Naval Surface Warfare Center, Dahlgren
6210 Tisdale Road, Suite 134
Dahlgren, VA 22448
(540) 653-1478
vanessa.lent@navy.mil