Are We Measuring What We Think We Are Measuring?

Presentation #14099

Jim Talley
Senior Director – Technology and Advanced Development Projects

May 16, 2012
Objective

- A reminder to not forget the basics of:
 - Understanding what we measure
 - Understanding how we report results
 - Understanding how we interpret results
Understanding What We Measure

- The basic ammunition performance measurements:
 - Pressure
 - Velocity
 - Action time
We Love Our Data

- How often do we see test data reported like this:

It is very detailed... but is it correct?
Pressure

- Copper Crush Method versus Piezoelectric

![Graph showing the comparison between Copper Crush Method and Piezoelectric in terms of Peak Chamber Pressure (CUP). The graph includes data points for 2,828 rounds fired in 319 tests.]
Pressure

- Piezoelectric Limitations

A 3, 4 or 5-point calibration won’t enable non-linearity correction.

(Kistler Model 6215 data from www.kistler.com)
Velocity

• Typical Measurement Setup:
Typical Test Setup Parameters

5.2.1.2 The elevation or depression of the Mann barrel shall not exceed 5 degrees of angle above or below horizontal.

5.2.1.3 The velocity coils or photo screens for measuring projectile velocity shall be positioned at the following distances:

a. Minimum distance from gun muzzle to first screen - 3 meters

b. Minimum distance between first and second screens - 6 meters

The range at which the velocity is recorded (range midpoint) is defined as follows:

\[
\text{Range midpoint} = \frac{(\text{Distance from muzzle to first screen}) + (\text{Distance between screens})}{2}
\]

Distances shall be measured accurately to the nearest 1.0 centimeter (cm).
Assume Typical Setup Errors

- Assume the spacing of the skyscreens at ground level is known to ± 0.5 cm
- Assume the skyscreens are vertical to ± 1°
- Assume the shotline is horizontal to ± 2.5°
- Assume the skyscreens are at the same elevation
- Assume our ability to measure elapsed time is perfect
Velocity Measurement Uncertainty (±)

- Spacing: ± 0.5 cm
- Vertical Alignment: ± 1°
- Shotline: ± 2.5°
- Timing Error: Zero

The uncertainty associated with a 3,300 ft/s velocity measurement is ± 28 ft/s!
Action Time

- Measurements for electrically-primed ammunition are generally pretty clear:

4.6.2.3 **Action time.** The sample cartridges shall be fired from the single-shot barrel in accordance with AMCR 715-505 and conditioned and shot at two temperature ranges: 68 to 72°F, and -60 to -70°F. The time between application of firing pulse and the exit from the muzzle of the projectile shall be measured. The action time shall comply with the requirements of 3.2.1.2.

AS-6120A (PGU-28A/B)
Approved for Public Release; Distribution Unlimited

4.5.4 **Action time.** The test rounds shall be conditioned at -54°C, 21°C and 71°C and fired from a test fixture barrel. The time between application of voltage to primer and exit of the projectile from the muzzle shall be measured. The time shall comply with requirement of 3.13. Any corrected action time of 2.40 milliseconds or less shall be disregarded as an instrumentation error.

MIL-C-63982A (M789)
Approved for Public Release; Distribution Unlimited
Action Time

● Percussion-primed? Not as simple:

4.6.6 **Action time.** The method of test shall be as specified in AS12013566.

MIL-C-85656 (PGU-25)
Approved for Public Release; Distribution Unlimited

4.6.2.1 Chamber pressure and action time. The cartridges shall be tested in accordance with AS12013566, excluding alternate method for obtaining chamber pressure by measuring case mouth pressure. Chamber pressure shall be measured with a piezoelectric transducer that conforms to drawing 12910127. The cartridges shall be conditioned for a minimum of four hours at the applicable temperature and fired from a Mann barrel.

MIL-PRF-71140A (M793)
Approved for Public Release; Distribution Unlimited

AS12013566 neither defines “action time” nor how to measure it.
Action Time

- The M793 specification defines action time:

 6.12.1 Action time. Action time is defined as the time period between the initial contact of the weapon firing pin against the primer and the exit of the projectile from the muzzle.

 MIL-PRF-71140A (M793)
 Approved for Public Release; Distribution Unlimited
Typical Breech Behavior

Firing Pin
Typical Breech Behavior
The Bottom Line

We wouldn’t put dimensions on a drawing without considering their tolerance.

Why don’t we do the same thing with measurements?
● Contact information:

 Jim Talley
 General Dynamics Armament and Technical Products
 802-662-6013
 jtalley@gdatp.com