Analysis of Fatigue Life Estimate for the M119 Cradle Assembly with a Gouge Cut Defect

Caitlin Weaver, Robert K. Terhune, Brian Peterson

AMSRD-AAR-MEF-E, Building 94, 2nd floor
Fuze and Precision Armaments Directorate
AETC, U.S. Army ARDEC, Picatinny Arsenal, NJ 07806-5000
phone: 973-724-6349, fax: 973-724-2417, caitlin.m.weaver@us.army.mil

2012 NDIA Joint Armaments Conference, Seattle, WA
May 14-17, 2012
Outline

• I. Background
• II. Method - Abaqus
 – Geometry, Part Instances, BC, Materials, and Loads
 – Pre-cracked Models
 – Applied Loads
• III. Method - Fe-Safe
 – Material Property and Load Data
 – Analysis Summary
• IV. Method – NASGRO
 – Geometry, Material Property and Normalized Stress Data
 – Loads
 – Schedule Cycle
• V. Results
 – XFEM
 – Maximum Stress and Plastic Strain
 – Fe-Safe
 – NASGRO
• VI. Conclusions/Further Work
• VII. Questions

Distribution Statement A: Approved for Public Release; distribution unlimited
I. Background

- During the manufacturing process in 2011, 46 M119A2 systems were manufactured with a tooling groove defect in the 12593242 Cradle.
- The worst case tooling groove was 0.071-in deep and 2.300-in long, spanning the full length of the channel.

Goals:
- Run a fatigue and critical crack analysis on the modeled portion of the plate that has the tooling defect (gouge).
- Determine if cradle will survive for 1100 cycles (per reliability requirement MIL-DTL-32191).
- Determine if further analysis is needed.

Scope:
- The primary concern of the analysis effort is to analyze M119 cradle components specifically the firing mechanism plate of the cradle channel.
- The model is loaded by pressure data calculated from strain gauge data that was recorded during live fire testing.
I. Background (cont.)

***Note: Cradle critical components labeled, individual parts not specified below

Firing Mechanism Plate (gouge flaw)

Rear cradle structure

Firing Mechanism attachment points

- Analysis was performed using Abaqus 6.11
 - Analyses types: Dynamic implicit (XFEM) and explicit, non-linear materials, non-linear geometry
 - All models were meshed with 8-node hexahedral elements (C3D8R).

- To simulate the fixed position of the channel on the cradle:
 - the bottom face of the plate in the x-z plane was constrained in all directions and rotations using an Encastre boundary condition.
 - the top face in the x-z plane was constrained directionally and rotationally in the z-direction.

- Load:
 - the top face in the x-z plane was partitioned evenly into three equal parts.
 - the pressure load from the recorded test data was applied to the corresponding left, middle and right part of the top face of the x-z plane.

- Material used: 95-15 Stainless Steel.
 - Material property data was obtained from in house testing.
II.b. Method – Abaqus: Pre-Cracked Simulations

• To insert a crack into the model:
 – Create a planar shell with dimensions needed for desired crack size (Part Module).
 – Translate the crack instance to desired location, making sure that it doesn’t correspond to an element edge.

• Two pre-cracked models were used for XFEM simulation:
 – Case (1): a crack 0.015 x 0.011 inch horizontally along the gouge cut.
 – Case (2): a crack 0.015 x 0.011 inch vertically along the gouge cut.

• These pre-cracked models were done based off the results of a florescent penetrant test performed at YPG on 11 June 2011 that showed the presence of a 0.015 inch crack in the tooling defect area.
II.c. Method - Abaqus: Load Data

Applied Pressure Data

Distribution Statement A: Approved for Public Release; distribution unlimited
III.a. Method – Fe-Safe: Material Property and Load Data

- Analysis was performed using Fe-Safe version 6.2
 - Analysis type: imported dynamic explicit Abaqus analysis
- Material Used: SAE 4140
 - Ultimate tensile strength: 156,060 psi (very similar to 95-15 SS)
- Load Settings:
 - Step 1 at time = 0.2s, peak stress = 154,719, load scale: 0, 1; repeats = 5 (to simulate the reverberating from gun launch)
III.b. Method – Fe-Safe: Analysis Summary

FEA Fatigue Analysis Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>BrownMillers: Morrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>SAE-4140-system.dbase</td>
</tr>
<tr>
<td>Surface</td>
<td>75 um < Ra-default.kt</td>
</tr>
<tr>
<td>Kt</td>
<td>2.45</td>
</tr>
<tr>
<td>UTS</td>
<td>156.055 ksi</td>
</tr>
<tr>
<td>Subgroup</td>
<td>Surface</td>
</tr>
<tr>
<td>Knock Down</td>
<td>Off</td>
</tr>
<tr>
<td>Model File(s)</td>
<td>C:\Abqwork\MI19_fs_crmw_13feb12_2fesafe.odb</td>
</tr>
<tr>
<td>FEA Units</td>
<td>S=psi</td>
</tr>
<tr>
<td>Loading</td>
<td>Loading is equivalent to 1 Repeats</td>
</tr>
<tr>
<td>Load Definition File</td>
<td>current.idf</td>
</tr>
<tr>
<td>Elastic FEA</td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>1</td>
</tr>
<tr>
<td>Overflow Life value</td>
<td>0</td>
</tr>
<tr>
<td>Infinite Life value</td>
<td>Material CAEL</td>
</tr>
<tr>
<td>Temperature analysis</td>
<td>Enabled if temperatures present</td>
</tr>
<tr>
<td>Histories</td>
<td>None</td>
</tr>
<tr>
<td>Log</td>
<td>None</td>
</tr>
<tr>
<td>List of Items</td>
<td>None</td>
</tr>
<tr>
<td>Histories for Items</td>
<td>None</td>
</tr>
<tr>
<td>Log for Items</td>
<td>None</td>
</tr>
<tr>
<td>Output contours</td>
<td>C:\Users\catlin.m.weaver\Documents\fe-safe.version.6.2\projects\project_01\jobs\job_01\fe-results\MI19_fs_crmw_13feb12_2fesafe.odb</td>
</tr>
<tr>
<td>Contour variables</td>
<td>LOGLife-Repeat, SMAX/Yield, SMAX/UTS</td>
</tr>
<tr>
<td>Intermediate</td>
<td>C:\Users\catlin.m.weaver\Documents\fe-safe.version.6.2\projects\project_01\jobs\job_01\fe-results\fesafe.fes</td>
</tr>
<tr>
<td>Influence coeffs.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Gauges.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Solvers</td>
<td>Embedded Solver</td>
</tr>
</tbody>
</table>

Distribution Statement A: Approved for Public Release; distribution unlimited
IV.a. Method – NASGRO: Geometry, Material Property, and Normalized Stress Data

- Analysis was performed using NASGRO version 5.0
- Model used was surface crack plate specimen (SC17) with the same dimensions as the plate measured in Abaqus
 - Model was chosen after consultation with J. Cardinal (staff engineer at SwRI)
- Materials: 95-15 Stainless Steel (from in-house testing) and 15-5PH H1025 Stainless Steel (defined in NASGRO)

<table>
<thead>
<tr>
<th>Normalized X</th>
<th>Normalized S0</th>
<th>Stress from Abaqus ODB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>154808</td>
</tr>
<tr>
<td>0.1</td>
<td>0.989083252</td>
<td>153118</td>
</tr>
<tr>
<td>0.2</td>
<td>0.967068885</td>
<td>149710</td>
</tr>
<tr>
<td>0.3</td>
<td>0.823122836</td>
<td>127426</td>
</tr>
<tr>
<td>0.4</td>
<td>0.577328045</td>
<td>89375</td>
</tr>
<tr>
<td>0.5</td>
<td>0.380914423</td>
<td>58968.6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.221089349</td>
<td>34226.4</td>
</tr>
<tr>
<td>0.7</td>
<td>0.105762622</td>
<td>16372.9</td>
</tr>
<tr>
<td>0.8</td>
<td>0.142635394</td>
<td>22081.1</td>
</tr>
<tr>
<td>0.9</td>
<td>0.322923234</td>
<td>49991.1</td>
</tr>
<tr>
<td>1</td>
<td>0.427379722</td>
<td>66161.8</td>
</tr>
</tbody>
</table>

Thickness, t	0.08
Width, W	2.35
Crack ctr offset, B	1.175
Initial flaw size, a	0.0375291
Initial a/c	0.375291
Screen shot of load blocks used for analysis; $S_0 = 154,808$ psi corresponds to the value from the Abaqus analysis; load corresponds to 1 cycle.
• Screen shot of build schedule; each load block is applied 1 time for 1000 cycles.
V.a. Results - XFEM

- The crack grows along the x-direction and varies between one and three elements through the thickness of the y-z plane.
- Value of 0.4 shows partial or surface cracking, not a complete through crack.
V.b. Results – XFEM pre-crack (X-axis)

- The crack grows along the x- and z- direction.
- Crack propagation is similar to the crack initiation case.
- Crack is partial or surface cracking, not a complete through crack (based on the color values).
V.c. Results – XFEM pre-crack (Y-axis)

- The crack grows along the x- and z- direction; no crack growth in the y-direction.
- Crack propagation is not similar to the crack initiation case.
- Crack is partial or surface cracking, not a complete through crack (based on the color values).
• Crack initiation occurs at a Von Mises stress of 144,562 psi, which is slightly lower than the yield stress of the material
 - As the crack continues to propagate yield stress is reached
• Plastic strain was not exceeded
• Analysis shows a life cycle of 1071
Results show that crack becomes unstable after 106 cycles.
- Crack grows to 0.072-in before failure, which is almost the thickness of the part.
- Part thickness is 0.080-in.

Distribution Statement A: Approved for Public Release; distribution unlimited.
VI. Conclusions

Conclusions:

• Results from all three methods show that the plate specimen fails the reliability requirement of 1100 mean rounds.
• The plate specimen was not able to prove that the channels with the tooling defects would survive the required amount of firings/cycles.

Path Forward (suggested):

• Since the plate specimen was not able to prove survivability, a more accurate FEA model needs to be analyzed in Abaqus and fe-safe to determine of the firing mechanism plate/channel would survive in the cradle assembly.