Modeling and Analysis of a Cam for the 35mm Bushmaster® III Automatic Cannon
Outline

• Background
• Problem Statement
• Design and Analysis Process Overview
• Defining Cam Geometry
• Calculating Cam Loads
• Analyzing Cam Strains
• Conclusions
ATK’s 35mm Bushmaster® III (BMIII) Automatic Cannon:

- Derived from 25mm M242 Bushmaster® Automatic Cannon and 30mm Mk44 Bushmaster® Automatic Cannon

Initial BMIII Development Testing Revealed:

- High Load Condition on the Ferguson Cam
- Large Permanent Deformation of the Cam Roller Follower
What is a Ferguson Cam?

Mechanism to Place Rounds onto the Breech Bolt Face

Cam

Bolt

Rotor
What is a Ferguson Cam? (p. 2)

Constant Velocity Input whose Output Turns a Rotor to Move the Rounds

Dynamics are similar to automotive cams because of the size of the ammunition.
Cam Rollers

Example of Drastically Reduced Extrusion

Extruded Material

Early BMIII Development Testing

With Production Material Selection
Analysis Objectives:

1. Evaluate Material
2. Explore Options to Reduce Load While Minimizing Design Impacts

Starting Point:

1. Cam Designs Traditionally Provided by Ferguson Cam Developers
2. Twelve Month Lead Time for New Cam Drawings
3. No Solid Models Available
Design and Analysis Process

• Model the Geometry
 • Mathcad: Create Input / Output Function (Displacement, Velocity, …)
 • Mathcad: Construct Cam Surface Data Points
 • NX: Create Geometry

• Calculate Impact Loads
 • MSC.ADAMS: Dynamic Model of Feeder System

• Calculate Roller Stresses
 • Abaqus: Transient Dynamic FEA with Contact and Nonlinear Materials
Define Geometry – Step 1

Choose an Input / Output Function

Input Displacement (normalized)

Output Acceleration

a/2 b/2 c/2 CV a/2 b/2 c/2
Basic Machine Design: Vector Diagrams to Define Component Motion
Impact Loads between Cam Rollers and Cam Face

- Roller Loads on Acceleration Side
- Roller Loads on Deceleration Side
Explore Changing Cam Acceleration Profile to Reduce Roller Impact Loads

- Leave Gun Envelope Unchanged (Cam Action Time and Size Unchanged)
Cam Function Iterations – Results

Options 2-6: Change Cam Acceleration Profile, Leave Cam Size Unchanged
Options 7-8: Use Production Cam Acceleration Profile, Change Cam Size

Peak Impact Forces

Conclusion: Production Cam Profile is Optimized for Roller Loads
Finite Element Model

Force Time History from ADAMS used as Input to a Finite Element Model

- Transient Dynamics
- Frictional Contact
- Material Plasticity

Snapshot of Stresses During Impact
Animation of Stresses During Impact
Roller Plasticity

Plots of Post-Impact Plastic Strains:

- Blue Indicates Zero Plastic Strain
- Results from Plane-Stress Models

Model of Early BMIII Development Testing

Model of BMIII With Production Material
Conclusions

Outcome:

1. Ferguson Cam Tools and Processes Developed
 a) Independently Create Cam Geometries
 b) Calculated and Corroborated Loads with Field Experience
 c) Developed Understanding of Mechanism Parameters that Drive Loads

2. Investment in Developing These Tools Has More Than Paid for Itself
 a) This was a Long and Difficult Analysis Process (12 Months)
 • 9 Months to Develop Tools to First Load Calculations
 • Then 8 Designs Investigated In 1 Month!
 • Simply Not Possible Without These Tools
 b) Drastically Cut Lead Time for New Cam Drawings
 (12 Months to 1 Month; Actual Cam Surface Creation Less Than 1 Day)
 c) Leveraging Cam Understanding into Entire Product Line
Questions?