Advancements in Lightweight .50 Caliber Ammunition

Presented By:

Mr. Jarod Stoll
Mechanical Engineer
Ph: (812) 854-8751
Email: jarod.stoll@navy.mil

Ms. Kathryn Hunt
Chemical Engineer
Ph: (703) 432-8768
Email: kathryn.hunt@usmc.mil
• **Background**

 – Transitioned to a Title III program to develop a domestic production capability for lightweight polymer based ammunition.

 – Title III contract awarded to MAC, LLC, located in Bay St. Louis, MS on 18 September 2008

 ➢ Focus was on the development, production, and qualification of lightweight .50 caliber ammunition
.50 Caliber Polymer Case

- **MK 323 MOD 0**
- **Cartridge Design**
 - Hybrid cartridge case
 - Brass base cap
 - Polymer caselet
 - M33 projectile
 - WC 869 Propellant
 - No. 35 Primer
- **Packed 100 linked cartridges per M2A1 ammunition can**
Cartridge Performance

- Meet or exceed the ballistic requirements of M33 per specification MIL-DTL-10190F
 - Chamber Pressure
 - Muzzle Velocity
 - Action Time
 - Accuracy

- Function in all fielded weapon systems (i.e. M2HB, GAU 21/A, etc.)
• Benefit
 – 25% weight savings over conventional brass cased ammunition
 – Given the large number of platforms and missions, operational benefits of lightweight ammunition vary
 – Biggest payoffs in weight-critical scenarios:
 ➢ Increase effectiveness, due to larger quantity of rounds carried
 – Fewer reloads
 ➢ Operational flexibility – carry more equipment
 ➢ Increased operational range
 ➢ Reduced fuel consumption
 ➢ Less fatigue to personnel
- Cartridge Development and Challenges
 - Initial development work conducted exclusively with the M2HB
 - As a drop-in replacement for M33, the MK 323 had to be functional in all .50 caliber platforms
 - XM218 and GAU 21/A were introduced
 - Initial testing revealed the cartridge could not endure the higher rate of fire aircraft weapons
 - Projectile setback in cartridge case
 - Case separation at the joint between the brass cap and polymer caselet.
 - Case separation caused by combustion gases entering the interface between the polymer cartridge caselet and the brass base.
 - Issue was corrected by a change to the internal geometry of the case to completely seal the interface.
Program Status

- Cartridge design has been frozen
- Test and Evaluation Master Plan (TEMP) in process
 - TEMP includes performance testing and required safety qualification testing for future fielding.
 - 90% complete with the initial performance testing against the baseline M33 ball round.
 - Safety qualification testing anticipated start of July 2012
Initial Performance Testing

- MK 323 Lot: BYS12B264S-001
- M33 Lot: LC-10D406-994
- Chamber Pressure, Muzzle Velocity, and Action Time

 Conducted in accordance with SCATP-7.62mm

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure Mean (psi)</th>
<th>Velocity Mean (fps)</th>
<th>Std Dev</th>
<th>Action Time Mean (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 70F</td>
<td>53,359</td>
<td>2,881</td>
<td>15</td>
<td>1.471</td>
</tr>
<tr>
<td>- 25F</td>
<td>47,150</td>
<td>2,720</td>
<td>24</td>
<td>1.581</td>
</tr>
<tr>
<td>+ 145F</td>
<td>57,220</td>
<td>2,996</td>
<td>16</td>
<td>1.431</td>
</tr>
</tbody>
</table>

MK 323 provides greater temperature stability in the two lots compared

Distribution Statement A – Approved For Public Release
• Initial performance testing (continued)
 – Accuracy and Ballistic Match
 ➢ Testing conducted at 600 yards
 ➢ 5 - 10 round groups out of two 36” accuracy test barrels

<table>
<thead>
<tr>
<th></th>
<th>100 Round Mean</th>
<th>M33</th>
<th>MK 323</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Spread (in)</td>
<td>22.2</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation (in)</td>
<td>5.9</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Mean Radius (in)</td>
<td>7.2</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

➢ Mean Point of Impact (MPI) taken from each 10 round group
➢ 6.8 inch average disparity in vertical MPI across both barrels
• Initial performance testing (continued)
 – Function and casualty

<table>
<thead>
<tr>
<th>Function & Casualty</th>
<th>Test Weapon</th>
<th>Mount</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M2 Heavy Barrel #1</td>
<td>MK 93</td>
<td>-25°F - 5°F</td>
</tr>
<tr>
<td></td>
<td>M2 Heavy Barrel #2</td>
<td>MK 93</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>XM218, GAU 16/A #1</td>
<td>Aircraft</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>XM218, GAU 16/A #2</td>
<td>Aircraft</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>GAU 21/A #1</td>
<td>Aircraft</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>GAU 21/A #2</td>
<td>Aircraft</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>GAU 21/A #3</td>
<td>Aircraft</td>
<td>600</td>
</tr>
</tbody>
</table>

- All testing through the M2HB has been completed.
- Remaining weapons still to be completed
- Three cartridges at -25 F had a mid case split resulting in a weapon stoppage
 - Root cause has been identified and corrective action being taken
.50 Caliber Polymer Case

- Function and casualty M2HB
.50 Caliber Polymer Case

- Function and casualty GAU 21/A
Initial performance testing (continued)

- Hot gun cook-off
 - 400 cartridges of M33 were fired in rapid succession through a M2HB to bring barrel temp to 600°F
 - MK 323 cartridge was chambered and allowed to soak for 5 minutes
 - If no cook-off occurred, round was fired.
 - A total of 5, MK 323 rounds were tested with no cook-offs occurring
• Future Events
 – Conclude baseline performance testing
 – Environmental series testing and post test firings
 – Hazard Classification Testing
 – Pending successful completion of testing, WSESRRB review and other associated full qualification activities
• **Path forward**

 – Load alternative projectiles e.g., Tracer, AP, and API, SLAP, etc.)

 – Alternative calibers could be developed from the technology such as 5.56mm, 7.62mm, .300 Win Mag, and .338 Lapua Mag

 – Testing has indicated potential improvements in precision fire capability over brass case cartridges
Questions?