Modeling and Simulation for Guided Mortar Projectiles

May, 2012

M. J. Wilson, PhD
Arrow Tech Associates
South Burlington, VT 05403
802-865-3460 x14
mike@prodas.com
If you can't get a bigger target...

Requirements

- **Very Low Cost**
 <$15K

- **Survivability**
 Launch environments
 5K+ Gs

- **Form Factor**
 Limited space on small airframes

- **Spin Dynamics**
 Spin rates from 5 – 250 Hz

GNC Design

- **Reduced Sensing**
 Sensors are inaccurate or nonexistent

- **Reduced Control**
 Actuators are simple, axes are coupled

- **Novel Guidance Algorithms**
 Must be robust for compatibility with reduced sensing and control

High fidelity modeling and simulation is critical for the success of guided projectiles!
GNC Design - 60mm Guided Mortar

- Larger fins for lift, stability, and roll
- Standard Mortar Body
- Extended Ogive for GNC Components

Reduced Control
Canards with Limited Actuation
Reduced Sensing
GPS-Only w/ Roll Angle Output
Flight CONOPS

1. Drop in Tube
2. GPS Acquisition
3. Canards Deploy
4. Begin Guidance
5. Terminal Guidance
6. Target
• Guidance algorithm must take advantage of ballistic trajectory
• Do not want to fight gravity
• Additional trajectory shaping can improve angle of fall
Aerodynamic Model

Direct Table Lookup Coefficients
- Extremely versatile – capture any asymmetries and nonlinearities
- Wind tunnel / CFD compatible format
- High angle of attack

\[
F_z = \bar{q}A \left(C_z + \frac{pd}{2V} C_{zp} + \frac{qd}{2V} C_{zq} \right)
\]

\[
m = \bar{q}Ad \left(C_m + \frac{pd}{2V} C_{mp} + \frac{qd}{2V} C_{mq} \right)
\]

Polynomial Approximations
- Physics-based simplifications
- Spark range / aero predictor compatible format
- Flight test data reduction parameter fits

\[
F_z = \bar{q}A \left(- \left[C_{N\alpha} + C_{N\alpha3} \sin^2 \bar{\alpha} \right] \frac{w}{V} - \frac{pd}{2V} C_{\alpha p} \frac{v}{V} + \frac{qd}{2V} C_{Nq} \right)
\]

\[
m = \bar{q}Ad \left(\left[C_{m\alpha} + C_{m\alpha3} \sin^2 \bar{\alpha} \right] \frac{w}{V} + \frac{pd}{2V} C_{np\alpha} \frac{v}{V} + \frac{qd}{2V} C_{mq} \right)
\]
Error Budget

- **Body States**
 - Muzzle Velocity
 - Tipoff
 - WLE
 - QE
 - Azimuth

- **Mass Properties**
 - Mass
 - CG
 - Axial Inertia
 - Transverse Inertia

- **Aerodynamics**
 - Drag
 - Magnus
 - Lift
 - Pitching Moment
 - Pitch Damping

- **Rocket Motor**
 - Ignition Time
 - Torque
 - Thrust

- **Environment**
 - Temperature
 - Wind Magnitude
 - Wind Direction
 - Pressure

- **GNC**
 - Sensor Biases
 - Actuator Disturbances
 - Noise
 - Modeling Errors

- 3 Types: Mission-to-Mission, Weapon-to-Weapon, Round-to-Round
Accuracy Results

- Monte Carlo trials based on error budget
- CEP50 vs. CEP90
- Randomizing
 - Missions
 - Weapons
 - Rounds
PRODAS Environment

Modeling
- Projectile Modeler
- Aero Prediction
- Mass Properties
- Rocket Motor
- Initial Conditions
- Error Budgets
- MET

Visualization
- 3D Animations
- Extensive Plotting

MATLAB/Simulink Environment

Development
- Leverage All MATLAB/Simulink Toolboxes and Blocksets
- Focused Effort on GNC Design

Simulation
- Validated 6+DOF Trajectory Engine
- Seamless Data Interface and Execution Between PRODAS and MATLAB

Product Tests

Hardware-In-the-Loop (HIL)
- Use the same simulation to drive the HIL fixture

Embedded Code Generation
- Automatically generate flight code from the Simulink model

Fire Control
- Simulation software is the basis of fire control software