NDIA 2012

Missile Simulation in Support of Research, Development, Test Evaluation and Acquisition

15 May 2012

Briefed by:
Stephanie Brown Reitmeier
United States Army Aviation and Missile Research, Development, and Engineering Center
Live tests are costly.

Simulations are used in advance of the flight to simulate expected conditions. This information may be used to make adjustments or recommendations prior to test.

Simulations are used after flight to make determinations about performance. These data may also be used for verification purposes.

The use of models in these simulations allow for scenario excursion and robust treatment of the exercise.
All Digital Simulation
- Used to analyze and visualize system performance from launch to target interception
- Models are incorporated into the simulation and the loop is “closed”

Hardware in the Loop
- Used to assess system performance using actual system hardware as well as software
- Models are presented to the system
The Common Scene Generator in compilation with a system IFS gives designers the capability to do numerous “what if” excursions during development.

The incorporation of validated models to the Common Scene Generator makes it a useful tool in preparation for formal developmental and operational test exercises.

The simulation, along with its component models, are generally accredited for use in supporting developmental and operational test activities.
An Integrated Flight Simulation (IFS) is characterized by the integration of highly detailed component models, high-fidelity synthetic image generation for stimulation of tracking algorithms, and inclusion of embedded tactical flight software.

Integrated flight simulation extends traditional 6-DOF with:

- Tactical GNC
- Tactical Track Algorithms
- High Fidelity Sensor Models
- High Fidelity Scene Generation
Scene Flow Diagram

High Fidelity Models

- **IR**
 - Env Effects
 - Antenna /Radome

- **MMW**
 - Env Effects
 - Antenna
 - Waveform Generation
 - Pulse Compression

- **SAL**
 - Laser Spot

Scene Generator

- Common Scene Generator (CSG)
 - High Fidelity Scene Generation
 - **Targets**
 - Clutter
 - Range Gates
 - Countermeasures
 - Atmosphere
 - Weather

Sensor Models

- **IR**
 - Optics, MTF, NEDT, Readout Electronics

- **MMW**
 - Antenna, Waveform Generation, Pulse Compression, RF electronics

- **SAL**
 - Dome/Optics/Detector, Analog Electronics, Time Resolved Pulse

Tactical Code

- Tactical Software and Firmware
The Common Scene Generator (CSG) calculates the energy in the environment that is presented at the seeker dome over the waveband of a given seeker.

- **Infrared (IR)**
 - Calculates either blackbody equivalent temperature (degrees Kelvin), radiance (W/cm²/sr), or photon radiance (ph/s/cm²/sr) based on emitted and reflected energy in the environment.

- **Semi-Active Laser (SAL)**
 - Calculates the energy density in Joules/cm² based on energy emitted by a designator that reflects or scatters back toward the sensor.

- **Millimeter Wave (MMW)**
 - Calculates the energy return from clutter and targets based on geometry, radar antenna and waveform characteristics and presents to the sensor in complex I/Q samples (volts).

- **GroundTruth**
 - Generates an image color-coded by pixel for target, background and obscured target

- **Visual**
 - Renders terrain and objects with no spectral calculations
Geometry Development Process

The process begins through the creation of high-fidelity geometries

Data Collection
Gather physical target information for accurate CAD representation

RF Facetized
Use dimensional data to create very high fidelity target geometries suitable for use for RF prediction software

IR Mesh
High fidelity model is used as a starting point to create meshes that are inputs to IR predictive software

Visualization Model
High fidelity model is used as a starting point to create low fidelity models used training and visual simulators
Additional processing is needed to generate physics based inputs for simulations.

Radio Frequency Back Scatter, Azimuth and Elevation Dependent

Infrared and Semi Active Laser Textures, Temperature or Radiance

Facetized Model

Meshed Model

Radio Frequency Signature Software

Infrared Signature Software
Virtual Targets are vetted through a validation process to:

- Ensure geometric fidelity
- Ensure physical and spectral accuracy
An Example

A customer has a requirement to test system performance against a particular set of vehicles in a location in the United States.

Said customer would like to have an analysis of the test scenarios before actually flying the hardware.

Let us choose our locations to be:
Eglin Air force Base, Florida
AMRDEC has established a methodology to create high-fidelity terrain backgrounds in which to utilize virtual targets

This methodology involves:
1. The identification of the area of interest
2. The identification of discrete clutter types
3. Prediction of the environment using an Infrared tool known as EOVIEW
4. Methodical data collection of Radar data of the discrete clutter types
5. Scene creation in CSG
6. Insertion of virtual targets
7. Simulation is run for both Radar and Infrared in CSG with targets and backgrounds
The identification of the area of interest
Class Map Example
Terrain Characterization and Model Development Process

Source Data
- Satellite Imagery
- Aerial Survey Photos

Material Classification Process

Object Placement Map (OPM) Derivation Process

DEM RESAMPLE PROCESS

South Iraq Multi-Spectral Ortho Mosaic

Class Map

Ground Plane FTOP

DEM

Clutter discrete locations
Vegetation Height
Clutter Discrete Development

Yaupon Holly Bush

- 2m
- 1m

Turkey Oak Bush

- 1.5m
- 0.9m
- 0.45m

Live Oak Bush

- 1.5m
- 0.9m
- 0.45m

Saw Palmetto

- 1.5m
- 0.9m
- 0.5m
IR Terrain Signature Calculation Process

Class Map

Topo Data (FTOP)

Scene Components

Virtual Target

Material Properties for Each Class
- Absorptivity
- Emissivity
- Thermal Conductivity
- Specific Heat
- Etc.

Build OPM

Thermal Solver

Physical Temperatures
- Target
- Terrain
- Clutter Discretes

Weather Data

CSG Thermal Signature Inputs
- FRAD
- BIFS
EOView Results - Thermal Interactions with VirtualTarget Model
Radar Signature Data Collection

Rail-SAR

Portable radar collection asset
Ka-band
2GHz Bandwidth
1.8m rail
~110’ height extension
Radar Measurement Process

Mark the exact clutter scene of interest with ground truth net (10’x 10’)
Set removable trihedral markers at the corners of the net
Remove net
Measure Clutter: with indexing

View from the RAILSAR camera
Index reflectors in-scene
Motion compensation reflector in-scene
Grass Data: 10deg Elevation
Live Oak, 30 deg Elevation
Live Oak, 30deg Elevation
Infrared CSG
Demonstration Pictures
Infrared Demonstration: Moving Virtual Target
Infrared Demonstration: Moving Virtual Target
Radar Demonstration: Moving Virtual Target
Virtual Targets Center

The VTC is a collaborative effort between the PEO for Simulation, Training, and Instrumentation (STRI), PM ITTS, Targets Management Office and the AMRDEC, System Simulation and Development Directorate that supports Army and other service’s major weapon system developers in meeting their Modeling and Simulation (M&S) requirements.

The VTC creates:
- Target and clutter models at varying resolutions
- Signature representative simulation inputs such as
- millimeter wave (MMW), infrared (IR), and Semi Active Laser (SAL)
- Spectrally representative hardware surrogates and prototypes

The VTC completes performance assessments of its threat target models in conjunction with the Army’s Threat Validation Working Group in order to facilitate model use for DOT&E in accordance with AR 5-11 and PAM 73-1.

The VTC utilizes predictive technologies to add flexibility and robustness to the current simulation target suite.
Summary

https://modelexchange.army.mil