Laser Pointer for Shoulder Fired Weapons

An Evolving Capability for the User

NDIA Presentation
May 15, 2012
Washington State Convention Center – Seattle, WA
Mr. Kevin Thomas
Nammo Talley, Inc. Mesa, Arizona
M72 LAAW
66 mm
Shoulder Fired
Weapon Family

Disposable
Anti-Armor &
Anti-Structure
Weapons
Background

- Partnership formed with Crimson Trace Corp. (CTC) to develop a laser pointer system for use on M72 66 mm Family of Shoulder Fired Rockets
 - Based on CTC commercial laser technology
 - Range adjustable to match weapon (M72A7, M72A9)
 - Low cost, disposable
 - CTC investment in design and test hardware
 - Nammo Talley investment in integration and testing

- Prototype hardware built and demonstrated in 2010
 - QE adjustment capability
 - Establish located on launcher
 - Firing demonstration on Trainer Launcher
 - Draft performance spec and qualification plan
 - Refined size, launcher interface and human factors
Design Overview

Forward mounting
best ergonomic option
Requirements

• Sample Performance Specifications
 – Eye safe laser, Visible Red and Invisible IR options
 – Commercial technology, i.e. low cost
 – Selectable range settings
 – Powered by commonly available battery, replaceable
 – ±3 Mils system accuracy
 – Disposable but Laser Pointer reusability highly desired
 – Capable of surviving typical M72 environments
 • High and Low Temp Storage
 • Humidity
 • Temperature Shock
 • Vibration
 • Water Immersion
 • Salt Fog
 • Sand and Dust
 • 1.5M Drop
Design Overview – cont’d

- Laser Pointer
 - Source Controlled from CTC
 - Eye safe Class 3R Red and Class 1 IR laser options
 - Range adjustment 50-200M, 25M increments
 - Interchangeable to A7, A9 or other variants
 - Single AA battery, on/off button activation
 - Quick attach/detach to Range Plate
 - Intended to be disposable but proves to be reusable
 - Mostly injection molded glass reinforced urethane plastic
 - Aligned at factory (CTC)
 - Comes complete with sheath, battery, manual
 - Intended to be sold/shipped separate from Launcher
Design Overview

- System consists of Laser Pointer and Range Plate
Background – cont’d

• 2nd iteration of prototype hardware demonstrated
 – Smaller unit
 – Refined human interfaces
 – Improved QE adjustment capability
 – Improved human interfaces
 – 2nd demonstration firing with prototype hardware
 – Good results

• Development IRAD kicked off Q1 2011
 – Funding for completion of design and qualification
 – Includes non-recurring cost for manufacturing integration
 – High probability to be included in GOI contract

• CTC kicks off production tooling Q1 2011
Design Overview – cont’d

• Range Plate
 – Source Controlled from CTC
 – Contains cam for QE adjustment, unique to A7, A9, etc.
 • 50-200M, 25M increments
 – Keyed for mating with Laser Pointer
 – Mostly injection molded glass reinforced urethane plastic
 – Bonded to Launcher with screw and epoxy
 – Aligned during installation on Launcher (Nammo Talley)
 • Launcher mounted on mandrel with bore laser
 • Pivots on screw for QE adjustment
 • Set screws for AZ adjustment
Manufacturing Overview

- Range Plate Installation to Launcher
 - Launcher mounted on mandrel
 - Mandrel contains bore spotting laser to target on wall
 - Camera and monitor used to assist in alignment
 - “Master Laser” used to align Range Plate at 100M setting
 - Master is slightly modified version of production

- Process is conducive to retrofit of Launchers in field
Manufacturing Overview – cont’d
Engineering Test Data – cont’d

- Accuracy and Repeatability
Engineering Test Data – cont’d

- Environmental conditioning
 - High and Low Temp Storage, Temp Shock, Loose Cargo Vibration, Drop
 - Water Immersion, Humidity

- Conclusion
 - Launcher remains safe during after temp storage, temp shock, loose cargo vibration, drop
 - Laser will break away during cold drop, slight damage at hot
 - Laser continued to work
 - Humidity and water immersion acceptable for Launcher, slight corrosion on Laser battery but still functional
 - Laser drop caused slight sonic weld break and affected alignment
Engineering Test Data – cont’d

– Electrical
 • ESD and EMC
 • Battery life
 • Power operating range (temperature limits)
– Conclusion
 • Passed ESD and EMC
 • Battery life 14 hrs at ambient
 • Power drop off at ~135°F but reversible when cooled
 – Operating range of diode is 14 to 122°F
– Actions
 • Determine battery life at hot and cold
Engineering Test Data – cont’d

Laser Power \ Temperature Relationship

mW Laser 635nm

Temperature F

mW 2 per. Mov. Avg. (mW)
Engineering Test Data – cont’d

- Battery Life approximately 14 hours at ambient

Battery Life Test

- Battery: Duracell 1.5V Alkaline
- Laser: 5.6mm, 635nm, 3.5 mW power
- Temperature: 72°F

![Graph showing battery life test results]

Power (mW)

Duration (Minutes)
Qualification Testing

• Qualification plan included
 – System Safety
 – System Operation
 – Laser Pointer Operation
 – Laser Pointer Electrical
 – System Live Firing
 – System Durability

• Qualification Completed September 2011
 – Successfully met all criteria
Conclusion

• System entered serial production in March 2012