Investigation of Commercially Available Inerts as Gun Propellant Coating Materials – Feasibility Study

May 14 – May 17, 2012
NDIA Joint Armament Conference
Presented by
Duncan Park, 973-724-4398, duncan.park@us.army.mil
U.S. Army RDECOM ARDEC
Picatinny, NJ 07806
ACKNOWLEDGEMENT

- **ARDEC**
 - Jeffrey Wyckoff, Joseph Laquidara, Eugene Rozumov, Sarah Longo, Ryan Ordemann, Sam Moy, John Bolognini, Thelma Manning

- **ARL**
 - Pamela Kaste, Stephen Howard and Al Horst

- **Polymer Processing Institute**
 - Ming-Wan Young, Linjie Zhu,
OUTLINE

- Background
 - Goal/Objectives
 - Deterred vs coated propellants
 - Coating material attribute consideration
 - Material selection

- Approach
 - Material selection and Processing methods

- Results
 - Processing Study:
 - Aerosol spray (single grain)
 - Jury-rigged device & Dipping (up to ~30g)
 - Rotary pan coater (up to ~10 lbs)
 - Characterization Results – IR, Optical Analysis, CB, etc

- Summary and Conclusions
Increase performance w/o increasing P_{max}:
- Slowed/inhibited burning

Inhibit/reduce migration:
- Prevents plasticizer migration and degradation of performance resulting from migration

To improve IM characteristics:
- Coat with less energetic materials (Impact, spall threats)
Deterred propellants

- Many of the fielded propellants/igniters for the small cal, med cal, mortars, and artillery systems are deterred.

- Inert ingredient (deterrent) is applied and penetrates into the energetic substrate (base grain) → chemical gradient.

- Progressivity is achieved via chemical means.

- Typical deterrents are: dibutylphthalate (DBP), dinitrotoluene (DNT), ethyl centralite (EC), methyl centralite (MC), paraplex, and vinsol.

- Examples: M38, M47, WC 806, WC 808, WC 844, WC 864, AFP001, etc.

- Pros: cost-effective process, performance improvement…

- Cons: difficult to model (e.g. diffusion, interior ballistics, etc) and migration issue.
Coated propellants

- None fielded – still experimental
- Inert and/or less energetic ingredient is applied to energetic substrate (base grain) → homogeneous layer with distinctive thickness
- Progressivity is achieved via chemical means
- Several candidates are being considered for coating
- Pros (in theory): cost-effective process, easier to model, increased performance, reduced/inhibited chemical migration, possible improvement in IM response, and improved ballistic stability.
- Cons (in theory): may require blending (e.g. coated w/ uncoated grains), possible delamination while aging, etc…
Approach: Considered Attributes of Coating

- Considered Attributes (for both feasibility study and scale-up production)
 - Life cycle cost: Inexpensive
 - Availability: be commercially/readily available
 - Compatibility: Be compatible with gun propellant base grain
 - Processibility: cost, performance, ease of processing (in terms of time, control, etc)
 - Processing methods: spray, adhesion, solvent, surface tension, drying requirement, scalability, etc
 - Ability to work as a chemical barrier: Be able to block migration of chemicals in/out of base grain
 - Workable solvent System
 - No adverse effect on gun erosion
 - No additional contribution to residue after gun firing
 - No harmful product species
Approach: Processing Methods

- Lab Scale:
 - Spray (i.e. aerosol can, hand sprayer)
 - Dipping
 - Individual propellant grain was coated one at a time then about a dozen grains at a time in a jury-rigged device

- Pilot Scale:
 - Rotary pan coater was used to coat ~200 g of propellant grains per batch.
 - Dipping of multiple grains (~dozen per batch) was tried
 - Coated propellants were analyzed for weight, thickness, surface finish, etc.
 - Processibility was assessed for each method.
Results:
Aerosol Spray

- Aerosol sprayer was used for inerts:
 - Individual grains were coated evenly with high quality
 - No sticking
 - Good even coverage throughout the grain surface
 - Even thickness where inspected
 - Appeared to have good adhesion
 - Results were promising for moving forward to increase batch size.
Results:
Jury-Rigged Device & Dipping

- Increased batch size (~10g - ~30g):
 - While propellant grains were rotated in a drum, the coating materials were hand sprayed followed by forced air drying
 - The number of sprays (i.e. amount of applied coating per turn) between forced air drying were varied
 - The number of coats per batch were varied
 - The concentration of coating material in carrier solvent was varied
 - The solvent system was optimized initially based on coating material solution viscosity, substrate-solvent interaction, degree of stickiness, etc.
 - Dipping of multiple grains were attempted
 - Grains were sticking and were hard to break apart
 - Base grains were deforming due to the solvent system oversolvating the NC-based substrate
 - This method was dropped
Quick assessments

• Visual inspection
• IR analysis – samples were coated (coating masked the base grain well)
• Optical microscope – coating thickness was determined → ~45 microns
Results: Processibility Study

- Proof-of-concept
 - Aerosol spray: one grain at a time; high quality; low throughput
 - Manual spray bottle: several grains at a time; med quality; medium throughput

Aerosol can method (Sep 2008)

Hand Spray Method (Sep 2008)

Effects of concentration and co-solvent (acetone:EtOH) system – Hand Spray (Sep 2008)
Proof-of-concept

- Dipped coating: clumping was observed; distortion of base grains due to a long exposure to solvent.
- “Jury-rigged” rotating coater: improved quality; high throughput

Krispy Kreme® Doughnuts – Glazed by Dipping Process
Dipped method (2009)
Homemade Coating Stock (2009)

Jury-Rigged rotating coater (Sep 2009)
Tumbler Improved the Quality
Automated Tumbler – Quality improvement (Dec 2009)
Modernized processing
• Sweetie Barrel – Antiquated technology; current industrial process
• Fully Perforated Rotary Pan Coater - achieve predicted concentration gradient and coating thickness; adapted from pharmaceutical industry

Rotary Pan Coater (Vector Coater)
• Fully remote, PLC-controlled
• 3 coating pans (0.5 L, 2.5 L, 8 L)
• Variable spray guns configuration

Process Optimization
• Pan speed
• Inlet air temperature
• Degree of fill
• Spray gun – atomization
• Mass flow rate (coating)
• Coating solution viscosity and concentration
• Residence time
Results: Evolution of Coating Process

Make-shift Tumbler (pneumatic motor) + Hand Sprayer + Compressed Air

Rotary Pan Coater
Closed bomb

• Samples coated with three different inerts were tested:
• These samples were prepared using the make-shift tumbler and rotary pan coater.

Ignitability

• It was conducted at ARL (results are not shown in this paper)

30mm Ballistic Firing

• To be conducted later in FY12
Results: Closed Bomb Test - Vivacity

Vivacity – Inert A Ambient

Inert A coated propellant
- 3.69 wt% coated
- Higher slope than baseline until P/Pmax = ~0.4
- Similar slope as baseline b/t 0.4 and 0.6 (P/Pmax)
- Burning starts to be degressive around 0.65 (P/Pmax).
- These samples were prepared using the rotary pan coater.

Red = Coated propellant
Blue = Reference (uncoated base grain)
Results:
Closed Bomb Test – Vivacity

Vivacity – Inert B Ambient

- **Inert B coated propellant**
 - 1.16 wt% coated
 - Higher slope than baseline until \(\frac{P}{P_{\text{max}}} = \sim 0.4 \)
 - Similar slope as baseline between 0.3 and 0.6 (\(\frac{P}{P_{\text{max}}} \))
 - Burning starts to be degressive around 0.7 (\(\frac{P}{P_{\text{max}}} \)).
 - These samples were prepared using the rotary pan coater.
 - Significant ignition delay @ cold temp.

Green = Coated propellant
Blue = Reference (uncoated base grain)
Results: Closed Bomb Test - Vivacity

Vivacity – Inert C Ambient

Inert C coated propellant
- 2.31 wt% coated
- The resulting curve parallels the baseline
- It is possible the plasticizer may have migrated into the grain (not confirmed yet)
- Much less ignition delay compared to two preceding inerts

Purple = Coated propellant
Blue = Reference (uncoated base grain)
Summary and Conclusions

- Several types of coating materials have been investigated for their processibility and progressivity
 - Three inert materials have been downselected for further study
- Several methods of coating have been studied
 - Aerosol, dipping, jury-rigged mini-tumbler, and rotary pan coater
- The implementation of rotary pan coater has been successful in coating granular propellants at a pilot scale
 - Several processing variables were explored
- Coated propellants have been characterized in several ways:
 - Optical imaging, IR spectroscopy, closed bomb, ignitability study, etc
- Initial closed bomb results indicate that a better fundamental understanding of ignition of surface coated propellants is needed
 - Gun firing will follow; relationship between CB and gun firing will be better understood