FINITE ELEMENT MODELING OF THICK PLATE PENETRATIONS IN SMALL CAL MUNITIONS

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Raymond Chaplin
RDAR-MEM-I
Picatinny Arsenal, NJ
raymond.c.chaplin@us.army.mil
973-724-8562
Why Finite Element Modeling?

• Reduced testing costs and iterations
• Reduced time between geometry and material design changes
• Allows fast comparison of multiple concepts
• Allows for visualization of events high speed cameras are incapable of capturing
FEA Penetration Modeling Weaknesses

• Material Properties
 – Penetration modeling is highly material properties dependant
 – Large strain rates encountered require use of complex constitutive models
 – Damage parameters settings can greatly effect model results

• Meshing Techniques and Contact Issues
 – Large Variety of meshing techniques to chose from - Eulerian, Lagrangian, SPH
 – Contact Issues arise from mesh density and time step
Meshing Techniques - Lagrangian

- Lagrangian mesh contains the material on the mesh
 - Mesh and material move together
 - Excessive element deformation requires deletion for run stability
 - Element deletion also results in mass loss of the model
 - Allows for the smallest overall model size and run times
Meshing Techniques - Eulerian

- Eulerian mesh contains the material in the mesh
 - Mesh stays constant and material flows through the mesh
 - Eliminates the need for element deletion as the actual elements no longer expand or contract
 - Mesh size needs to be large enough to capture the entire modeling event – this often leads to large computationally expensive models
 - Advection errors can also occur in elements with partial void fills
Meshing Techniques – Smoothed Particle Hydrodynamics

- SPH contains particles instead of elements
 - Particles have an initial mass and radius and interact with one another through a kernel function
 - Particles do not deform so element deletion is not necessary
 - Smaller number of total particles needed than an Eulerian mesh
 - Some codes allow for particle conversion of Lagrangian elements on element death or embedding of particles at the beginning of an analysis
Constitutive Models

• Johnson-Cook typically used as it takes strains, strain rates, and heating effects into account

• Johnson-Cook shows excellent damage behavior in compression.

• In tension Johnson-Cook can lead to overly “stretchy elements”

• To more accurately correlate to test data we typically need to add in a tensile failure stress or strain parameter
Material Properties

- Material Properties typically need to be calibrated with test data
 - Parameters used from standard material properties testing do not correlate to test data
 - Use Limit Velocity or residual velocity obtained from live fire data as primary calibration criteria
 - Also use final penetrator shape and entrance and exit hole diameters as secondary criteria
 - Calibration across different material strengths and impact velocities prove challenging
Contact issues

- Time step and mesh density needs to be adjusted so inner element penetration does not occur
Comparing different Meshing

Test Data

Lagrangian Plate and Bullet

Eulerian Plate with Lagrangian Bullet

Lagrangian Plate with Eulerian Bullet

Eulerian Plate and Bullet
Comparing different Meshing

Comparison of Residual Velocities

Velocity Decay during the penetration event
Comparing different Meshing

<table>
<thead>
<tr>
<th>Perforation Size</th>
<th>Entrance</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Average</td>
<td>0.321</td>
<td>0.568</td>
</tr>
<tr>
<td>Experimental Std. Deviation</td>
<td>.00873</td>
<td>.0100</td>
</tr>
<tr>
<td>Analysis 1</td>
<td>0.346</td>
<td>0.505</td>
</tr>
<tr>
<td>Analysis 2</td>
<td>0.347</td>
<td>0.492</td>
</tr>
<tr>
<td>Analysis 3</td>
<td>0.266</td>
<td>N/A</td>
</tr>
<tr>
<td>Analysis 4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Impact Perforation

Exit Perforation
Comparing different Meshing - SPH
Conclusions

• There is no 100% correct way to model plate penetration

 • Each meshing method has its own respective strengths and weaknesses and requires significant engineering judgment regarding their uses

 • Lagrangian bullets on Lagrangian plates typically make the best starting point for material calibration and initial modeling

 • If mass loss is a significant problem during initial modeling Eulerian and SPH sections can be explored to negate these effects

 • Regardless of the meshing method used calibration to test data is essential for accurate modeling.
Questions?