Development of a 7.62 mm Armor Piercing (AP) Projectile Using a Lean Design For Six Sigma (LDFSS) Process

Presented by Le Binh Tran
17 May 2012
Development of a 7.62 mm AP projectile using a LDFSS process

- OBJECTIVE
- APPROACH
- CONCEPTS
- RESULTS
- CONCLUSION
Development of a 7.62 mm AP projectile using a LDFSS process

OBJECTIVE

– To study a number of 7.62 mm AP projectile concepts with performances superior to those obtained with the 7.62 mm Improved Penetration (IP – 1038) cartridge.

– Criteria for the new design
 – penetration > 19 mm RHA at 100 m at 0°
 – penetration > 6 mm RHA at 550 m at 0°
 – Same propellant charge and cartridge case as 7.62 mm C21 (Canadian equivalent to US 7.62mm M80)
Development of a 7.62 mm AP projectile using a LDFSS process

APPROACH

– BRAINSTORMING
 – Several meetings to establish a set of criteria
 – 12 concepts were proposed:
 – Different materials
 – Several geometries
 – Various penetrator and slug combinations
 – Used Pugh method to select concepts that satisfy the criteria
 – V_{50} trials for three of the selected concepts
Development of a 7.62 mm AP projectile using a LDFSS process

CONCEPTS

– Three most promising concepts selected:

- M80 – T1
- Open Jacket – Tungsten Carbide (WC)
- Two Parts – Tungsten Carbide (WC)

– Two more concepts added to understand influence of materials on penetration:

- M80 – T15
- Open Jacket – T1
Summary of concepts characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight (g)</td>
<td>8.40</td>
<td>8.44</td>
<td>8.40</td>
<td>9.21</td>
<td>9.04</td>
<td>8.46</td>
</tr>
<tr>
<td>Penetrator Weight (g)</td>
<td>4.91</td>
<td>5.01</td>
<td>4.95</td>
<td>6.31</td>
<td>5.67</td>
<td>1.25</td>
</tr>
<tr>
<td>Slug Weight (g)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.85</td>
</tr>
<tr>
<td>Total Length (mm)</td>
<td>30.84</td>
<td>29.31</td>
<td>29.87</td>
<td>25.48</td>
<td>29.82</td>
<td>29.29</td>
</tr>
<tr>
<td>Hardness of Penetrator (RC)</td>
<td>57</td>
<td>60</td>
<td>67</td>
<td>71</td>
<td>60</td>
<td>71</td>
</tr>
<tr>
<td>Velocity at 24 m (m/s)</td>
<td>857</td>
<td>865</td>
<td>865</td>
<td>864</td>
<td>868</td>
<td>867</td>
</tr>
</tbody>
</table>
Development of a 7.62 mm AP projectile using a LDFSS process

- Setup for penetration trial
 - Three different thickness (10 mm, 14 mm and 19 mm) of RHA steel plates
 - Hardness of the steel plate was 300 HB
 - Standard V_{50} trial setup
 - Impact velocity was measured at 38 m
Development of a 7.62 mm AP projectile using a LDFSS process

RESULTS

- High speed camera pictures of projectiles in flight

Two Parts – WC
- 10 mm steel plate
- Impact Velocity : 804 m/s

Open Jacket - WC
- 14 mm steel plate
- Impact Velocity : 688 m/s

Open Jacket - WC
- 19 mm steel plate
- Impact Velocity : 828 m/s
RESULTS

- V_{50} measured for six rounds that penetrated and six rounds that did not penetrate the steel plates, within a velocity range of 40 m/s.
- The Reference projectile was the in-house developed, 7.62 mm IP-1038.
Development of a 7.62 mm AP projectile using a LDFSS process

RESULTS

Range vs plate thickness

- M80 – T1, M80 – T15 and OJ - WC are superior to the reference concept (IP - 1038)
- OJ – T1 shows same performance as the reference concept
- Two Parts – WC is inferior to the reference concept
- OJ – WC performs the best among all concepts
 - Only concept that satisfies the two criteria
 - Penetration > 19 mm at 100 m and > 6 mm at 550 m.
Development of a 7.62 mm AP projectile using a LDFSS process

- Second iteration
 - Concept Open Jacket – WC with a more sharper nose (Influence of the geometry)
 - Two Parts – WC
 - Press fit linkage between the penetrator and the slug (Linkage of the penetrator)
 - Increased weight of the penetrator
Development of a 7.62 mm AP projectile using a LDFSS process

- Results of second iteration
 - Open Jacket – WC and Open Jacket – WC #1 show similar results
 - Penetrator geometry has little influence on penetration
 - Press fit linkage has an influence on penetration (Two Parts – WC and Two Parts – WC #1)
 - Penetrator weight significantly influences penetration (Two Parts – WC and Two Parts – WC #2)
Development of a 7.62 mm AP projectile using a LDFSS process

RESULTS

- Used Quality Function Deployment (QFD) to prioritize concepts
- Higher QFD weight
 - Concepts Open Jacket – WC and Open Jacket – WC #1 were able to satisfy the penetration criteria
 - Concept Two Parts – WC #2 was able to penetrate a 14 mm steel plate at > 100 m
 - Concepts IP-1038, M80 – T1 and M80 – T15
 - Inexpensive to produce
Development of a 7.62 mm AP projectile using a LDFSS process

Conclusions

- The types of materials significantly influence penetration
 - Tungsten carbide gives good result (71 HRc).
 - The Hardness plays an important role on the penetration process. However, other mechanical proprieties may also have an influence since T1(60 HRc) and T15(67 HRc) have the same performance
- The weight of the penetrator has a major effect on the performance of the projectile
- The solidification of the linkage (Press fit) shows a better performance since the slug is able to transfer its momentum to the penetrator
- The geometry of the penetrator has little influence
Further Information

GD-OTS Canada
Le Binh Tran
Pierre Lemay (PM)

Location
Repentigny, Quebec

Phone Number
450-581-3080
450-581-6361