Efficient Test Design Using Both Design of Experiments Methods and Modeling & Simulation

NDIA 28th Annual T&E Conference
13 March 2012

Tom Donnelly, PhD
SAS Institute Inc.

Marshall Millett, PhD, PE
ManTech International Inc.
Goal is to look at existing data with “new eyes” so that lessons learned can be applied to future testing

- Use both Design of Experiments (DOE) and Modeling & Simulation (M&S) to get the most statistically valid results with the minimum of real testing
 - Sufficient data collected to find eight replications of a 66-trial full-factorial design in three factors
 - Monte Carlo simulation used to assess use of model fit to analog data to predict binary P(d) to Alarm vs. No Alarm

- Future testing will
 - Generate DOE as part of planning to include more factors and “potentially” more levels for some factors
 - Leverage physics-based M&S to identify regions requiring more or less real testing
Summary of Analyses

- Models fit to two subsets of the detector count data (12.4% and 6.75% of total) are used to show that
 - Mean of detector counts can accurately be predicted
 - Alarm state can accurately be predicted for factor combinations when detector counts are far from the threshold for alarm – i.e. when $P(d) = 1$.

- In the more difficult situation of predicting $P(d)$ when detector counts are near threshold for Alarm, Monte Carlo simulation is used to improve estimation of $P(d)$.
 - Key assumptions for validity of MC simulation are
 - Uniform error across the test space (transformation used)
 - Relationship between response and factors is well modeled
Background

- Government Agency where the synthesis of testing and modeling is in infancy but developing fast
- Must determine performance of potentially deployable radiation detection systems
- Test factors include shielding, source, and relative speed; tests often near full factorial
- Need to demonstrate that M&S can inform test design and support DOE to improve cost effectiveness of testing
Problem Details

- Three types of models in play:
 - Radiation transport is understood well enough to support pre-test physics modeling to help refine test requirements
 - Empirical regression modeling may be applied real-time in testing for parallel DOE
 - Operational modeling is applied using results from the previous two in order to assess or develop operations and assess high level performance

- Test execution costs are relatively high

- Highly complex system with binary output; other helpful response metrics considered
Distributions of 1067 Test Runs by Responses: Alarms, Detector Counts, SQRT(Detector Counts)
Factor Settings: 3 Threats, 11 Shielding Types, and 2 Target Speeds

Avoid focus on binary response!

Analog threshold for alarm is 1 on either scale.

“Metric data can be grouped so as to evaluate it by statistical methods applicable to categorical or ordinal data. But to do so would be to throw away information, and reduce the power of any tests and the precision of any estimates.”

Common Errors in Statistics (and How to Avoid Them)
by Phillip. I Good and James W. Hardin
Distributions of 1067 Test Runs by Blocks of all 66 unique combinations of 2 Target Speeds X 3 Threats X 11 Shielding Types
3-D Scatterplots of All 1067 Tests and the 2 X 66 Trial Subset of Unique Combinations - the Full-Factorial Design
3-D Scatterplots of $4 \times 18 = 72$ Trial and the $2 \times 66 = 132$ Trial Subsets of Unique Combinations
Spread of detector count data is more uniform when plotted on a square-root scale.
A reduction in detector counts seen at higher speed.

Linear relationship with uniform variance seen between SQRT(Detector Counts) and SQRT(Scaled Attenuation)
SQRT(Detector Counts) vs. SQRT (Scaled Attenuation)
Overlaid by Target Speed and Wrapped by Threat

A reduction in detector counts seen at higher speed.

Most data – especially for Threats I and II – are far from threshold for Alarm.
SQRT(Detector Counts) vs. SQRT (Scaled Attenuation) Overlaid by Target Speed and Wrapped by Threat for 528 trials

Small reduction in detector counts seen at higher speed.

Most data – especially for Threats I and II - are far from threshold for Alarm
Comparing the eight “66s” and four “132s” (NOTE: Effect of Target Speed is IGNORED)
Comparing the two “264s” and one “528s” (NOTE: Effect of Target Speed is IGNORED)
Plot of Actual vs. Predicted SQRT(Detector Counts) for 539 checkpoints using model with largest RMSE among fits of 8 sets of 66 trials and Scatterplot Matrix of Actual vs Predicted for 4 models.
Two Subsets of Data Used in Analyses

132 Runs
(12.4% of 1067)
Using 11 Different Shielding

25.0% of 528

72 Runs
(6.75% of 1067)
Using 3 Different Shielding

13.7% of 528
3-D Scatterplots of $4 \times 18 = 72$ Trial and the $2 \times 66 = 132$ Trial Subsets of Unique Combinations
Choosing Variables:

- Set the ranges boldly
- Experiment sequentially
- Make midcourse corrections when required
Timid vs. Bold Experimentation

Worst case scenario for just 1 data point at each setting of x
Timid vs. Bold Experimentation

What?

Better conclusion about $y = f(x)$
Bold Experimentation

Boldness helps to overcome the need for large number of trials.
Polynomial Regression Model Fit to Data from 18, 36, 72, and 144 tests at 2 Target Speeds, 3 Threats and 9 of 33 levels of Attenuation associated with 3 levels of Shielding for 3 Threats
Plot of Actual vs. Predicted SQRT(Detector Counts) for 534 checkpoints (excludes 5 points at 1X Target Speed) for FF model fit to 144 AFK Runs – 25 of 33 Shielding Cases ALL Alarm, P(d) = 1

Ten of 11 Shielding Cases (exception is B) ALL Alarm

All 11 Shielding Cases ALL Alarm

Four of 11 Shielding Cases (H, I, J & K) ALL Alarm
Monte Carlo Simulation of 100 Runs for the Case:
Shielding = A [SQRT (Scaled Atten) = 0.0376], Threat = I, & Target Speed = 2X,
and Using RMSE = 0.192 from FF Model Fit to 144 Trials
1800 Monte Carlo Simulations of $\sqrt{\text{Detector Counts}}$ and the Associated Alarms Out of 100
Actual Alarms, Three Monte Carlo Predictions of Alarm, and N Attempts vs. Shielding for 995 Checkpoint Trials

MC alarm predictions based on fit of SQRT(Detector Counts) data from 72 trials = [(A, F, & K) X (1X & 2X) X (I, II & III)] X 4
44 of 66 “ALL Alarm” Conditions Predicted Exactly
Actual Alarms, Three Monte Carlo Predictions of Alarm, and N Attempts vs. Shielding A (Threat I, Target Speed 1X)

Fit to actual 1067

Fit to Monte Carlo 1067

Fit to actual 72

Fit to Monte Carlo 72

ALARMS
- Actual = 6
- MC 1 Pred = 6
- MC 2 Pred = 7
- MC 3 Pred = 7
- N Attempts = 8
Actual Alarms, Three Monte Carlo Predictions of Alarm, and N Attempts vs. Shielding G (Threat III, Target Speed 2X)

ALARMS
Actual = 49
MC 1 Pred = 47
MC 2 Pred = 39
MC 3 Pred = 42
N Attempts = 62
Using 6.75% of Original Data (72 of 1067) able to Predict...

- 44 of 66 cases that ALL alarm (636 out of 636 individual alarms)
- Of 22 cases with P(d) < 1, Monte Carlo simulation used to better estimate P(d)
 - MC simulation based on fit to 3 of the 11 shielding types. P(d) prediction made for other 8 types (as well as unused data for 3 types fit) based on attenuation value for shielding.
 - When N Attempts for an individual case are > 60, the margin of error for P(d) is smaller than when N Attempts for an individual case are < 10
 - Goal is to be as efficient as possible in running the fewest real experiments
 - Knowledge of effect of attenuation (understanding physics) reduces need to test all shielding types to same degree
- Most of analog prediction error is likely due to random noise in process. The means of groups of trials are well estimated.
Summary of Analyses

- Models fit to two subsets of the detector count data (12.4% and 6.75% of total) are used to show that
 - Mean of detector counts can accurately be predicted
 - Alarm state can accurately be predicted for factor combinations when detector counts are far from the threshold for alarm – i.e. when $P(d) = 1$.

- In the more difficult situation of predicting $P(d)$ when detector counts are near threshold for Alarm, Monte Carlo simulation is used to improve estimation of $P(d)$.
 - Key assumptions for validity of MC simulation are
 - Uniform error across the test space (transformation used)
 - Relationship between response and factors is well modeled
Recommendations for Future Testing

- Use DOE to better cover the space of all factors: Threat (18), Shielding (22), Target Speed (2) & Cargo (7)
 - E.g. 1386 runs in ¼ fraction of 5544 full factorial
 - Constrain design or create multiple smaller designs if some combinations don’t make sense to use together

- Use Transformations to make error uniform across design space

- Use both existing analyses as well as physics-based M&S to identify factor combinations in vicinity of threshold for detection that may require more trials
Thanks.
Questions or comments?

tom.donnelly@jmp.com
Continuous vs Categorical responses

- Surveys Polls – why ask 1000 people?
- Margin of Error = Confidence Interval = \(1.96 \times \sqrt{p(1-p)/n-1}\)
 - When \(p = 0.5\), then \(1-p = 0.5\)
 - For \(n = 1000\), \(\text{MOE} \approx 1/\sqrt{n} = 1/(31.6) = 0.0316 \approx 3\%
- As values of \(p\) deviate further from 0.5, MOE shrinks
 - \(p = 0.50\), \(\text{MOE} = 0.032\)
 - \(p = 0.20\), \(\text{MOE} = 0.025\)
 - \(p = 0.10\), \(\text{MOE} = 0.019\)
 - \(p = 0.05\), \(\text{MOE} = 0.014\)
 - \(p = 0.02\), \(\text{MOE} = 0.009\)
Margin of Error for P(d)

- Surveys Polls – why ask 1000 people?
- Margin of Error (MOE) = Confidence Interval (CI) = $1.96 \times \sqrt{\frac{p(1-p)}{n-1}}$

 When $p = 0.5$, then $(1-p) = 0.5$ and $MOE \approx \frac{1}{\sqrt{n}}$

 For a fixed n as p moves away from 0.5, MOE shrinks or

 For a fixed MOE as p moves away from 0.5, fewer n required

<table>
<thead>
<tr>
<th>p</th>
<th>$1-p$</th>
<th>n</th>
<th>MOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>1000</td>
<td>3.1%</td>
</tr>
<tr>
<td>0.20</td>
<td>0.80</td>
<td>1000</td>
<td>2.5%</td>
</tr>
<tr>
<td>0.10</td>
<td>0.90</td>
<td>1000</td>
<td>1.9%</td>
</tr>
<tr>
<td>0.05</td>
<td>0.95</td>
<td>1000</td>
<td>1.4%</td>
</tr>
<tr>
<td>0.02</td>
<td>0.98</td>
<td>1000</td>
<td>0.9%</td>
</tr>
<tr>
<td>0.01</td>
<td>0.99</td>
<td>1000</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>$1-p$</th>
<th>MOE</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>3.0%</td>
<td>1067</td>
</tr>
<tr>
<td>0.20</td>
<td>0.80</td>
<td>3.0%</td>
<td>683</td>
</tr>
<tr>
<td>0.10</td>
<td>0.90</td>
<td>3.0%</td>
<td>384</td>
</tr>
<tr>
<td>0.05</td>
<td>0.95</td>
<td>3.0%</td>
<td>203</td>
</tr>
<tr>
<td>0.02</td>
<td>0.98</td>
<td>3.0%</td>
<td>84</td>
</tr>
<tr>
<td>0.01</td>
<td>0.99</td>
<td>3.0%</td>
<td>42</td>
</tr>
</tbody>
</table>
Mean(SQRT(Detector Counts)) vs. Shielding (Ordered by Attenuation) by Target Speed

Small reduction in detector counts seen at higher speed.

Mean(SQRT(Detector Counts)) vs. SQRT(Scaled Attenuation) by Target Speed

Linear relationship with uniform variance seen between SQRT(Detector Counts) and SQRT(Scaled Attenuation)
Comparing the two “264s” and one “528s” (NOTE: Effect of Target Speed is INCLUDED)
Model fit to 36 data points – 2 replications of:
2 target speeds, 3 levels of attenuation, & 3 threats
Model fit to 72 data points – 4 replications of:
2 target speeds, 3 levels of attenuation, & 3 threats
Model fit to 144 data points – 8 replications of:
3 of 11 levels of attenuation, 3 threats, and 2 target speeds
Comparing Exclusion and Inclusion of the Effect of Target Speed on the “528s” Analysis
Distributions of 1067 Test Runs by Blocks of all 66 unique combinations of 2 Target Speeds X 3 Threats X 11 Shielding Types

539 of 1067 set aside as checkpoint trials – not to be fit, but to be used to test predictions from full-factorial DOE subsets of the remaining 528 trials

534 of the 539 checkpoints are at Target Speed = 2X with other 5 at Target Speed = 1X

The 528 trials are made up of 8 separate sets of the 66 unique combinations of the three factors at their levels (2 X 3 X 11 = 66)

66 trials make up 6.2% of 1067 ≈ 1/16th.
132 trials make up 12.4% of 1067 ≈ 1/8th.
264 trials make up 24.7% of 1067 ≈ 1/4th.
528 trials make up 49.5% of 1067 ≈ 1/2.
Plot of Actual vs. Predicted SQRT(Detector Counts) for 539 checkpoints for models with largest RMSE among fits of 8 sets of 66 trials, 4 sets of 132 trials, 2 sets of 264 trials and 1 set of 528 trials.

Data points removed to better see small differences in lines.
Scope of Original Testing

- 3,850 tests were run for a particular detector technology using 244 (4.4%) of the 5,544 unique combinations of 2 levels of Target Speed*, 7 levels of Cargo, 18 levels of Threat Source*, and 22 levels of Shielding*

- Detector Counts*§ and Alarm Status were recorded.

- This analysis focuses on 1,067 tests (27.7% of the 3,850) using all 66 unique combinations (27.0% of the 244) of 2 levels of Target Speed, 1 level of Cargo (none), 3 levels of Threat Source, and 11 levels of Shielding

- Distributions of these data are shown on the next slide.

* NOTE: Data have been rescaled to blind information about actual detection levels, threats, and shielding

§ NOTE: Some detector count data was imputed because original values were deleted when neutrons were detected
One Subset of Data Used to Predict 995 Checkpoints

144 Runs (13.5% of 1067)
Using 3 Different Shielding
27.3% of 528

72 Runs (6.75% of 1067)
Using 3 Different Shielding
13.7% of 528
Model fit to 18 data points – 1 replication of:
2 target speeds, 3 levels of attenuation, & 3 threats
Focus on Threat I, Shielding B, Target Speed 2X where NOT ALL Checkpoints Alarmed (50/54 = 0.926 Alarmed)

- Generalized Linear Model Regression fit of 1800 Monte Carlo Alarm Predictions – 100 each for the 18 combinations of Threat (3), Shielding (3) and Target Speed (2)
- $\sqrt{\text{Scaled Atten}} = 0.0473$ is value for Shielding B with Threat I
Focus on Threat I, Shielding B, Target Speed 2X where NOT ALL Checkpoints Alarmed (50/54 = 0.926 Alarmed)

Generalized Linear Model fit of 144 Alarm values for 8 reps. of 18 combinations of Threat (3), Shielding (3) and Target Speed (2)

SQRT(Scaled Atten) = 0.0473 is value for Shielding B with Threat I

Generalized Linear Model Regression fit of 1800 Monte Carlo Alarm Predictions – 100 each for the 18 combinations of Threat (3), Shielding (3) and Target Speed (2)
Looking for Comments…

- Use of Monte Carlo simulation in lieu or in support of real P(d) testing
 - References to past work in field
 - Own experience
 - Approach used

- Modeling of all factors together as opposed to breaking out models by case — e.g. Threat I, Shielding B, & Speed 2X

- Approach of focusing on Shielding at extremes of Attenuation Scale vs. Using all Shielding

- Metrics and Methods for quantifying accuracy of predictions

- Numbers of trials to run near threshold and far from threshold for detection
Using 12.4% or 6.75% of original data, able to predict checkpoint results – both analog count data as well as binary alarm data

- 25 of 33 cases ALL alarm
- Of 8 cases with $P(d) < 1$, examined use of Monte Carlo simulation to better estimate $P(d)$
- Monte Carlo simulation based on fit to three of the eleven shielding types. $P(d)$ prediction made for other eight types based on attenuation value for shielding.
- Goal is to be as efficient as possible in running the fewest real experiments
 - Can knowledge of effect of attenuation reduce need to test so many shielding types?
- Most of analog prediction error is likely due to random noise in process. The means of groups of trials are well estimated.