

Test Optimization Utilizing Design Of Experiments

Tonja Rogers Peter Kraus John L Sims

March 13, 2012

Copyright © 2012 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Agenda

- Test Optimization Challenge
- Combinatorial Design Methods(CDM) & Design of Experiments(DOE)
- rdExpert Analysis
 - Coverage analysis
 - Design development
- Deployment Results
- Raytheon Case Study
 - Customer involvement what's important
 - Design constraints
 - Design space
 - Design evaluation/coverage
 - Results
- Resources

"We are being challenged by our customers and by the marketplace to develop increasingly complex systems with smaller performance margins that meet the user's requirements in the shortest time, with high reliability, open and adaptable, and at the lowest cost."

Given this challenge, there is more pressure than ever on Integration, Verification & Validation activities to deliver performance results on time and within budget.

Industry studies have shown test and rework to represent between 30 and 50% of product development costs. If this is even close to accurate, test represents fertile ground for optimization. Typical benefits of statistically-based test optimization include:

- Increased Mission Assurance
- Optimized performance
- Improved cycle time
- Increased Productivity
- Reduced cost

Raytheon Integrated Defense Systems Combinatorial Design Methods & Design of Experiments

Testing all possible combinations may be infeasible!

- When you must test a subset of all combinations how to choose an appropriate subset?
- The integrated application of statistical methods, most notably Design of Experiments (DOE) & Combinatorial Design Methods (CDM), has been cited by the Department of Defense as an industry best practice in this space.

Raytheon Integrated Defense Systems Enabling Test Optimization through CDM & DOE

- Combinatorial Design Methods (CDM) enable evaluation of test plans for their requirements via critical "n-way" test coverage thereby providing key Mission Assurance and business risk & opportunity benefits.
- Design of Experiments (DOE) enable development of highly efficient test plans while ensuring critical test coverage.
 - Because test is multi-factor, multi-level, orthogonal d-optimal experimental designs are utilized.

Coverage Assessment

Design Space

	Windows		Source	Destination
Factors	Version	File Size	Format	Format
Levels	OS1	S	GIF	GIF
	OS2	М	TIFF	TIFF
	OS3	L		
	OS4			

Windows		Source	Destination
Version	File Size	Format	Format
OS1	S	GIF	GIF
OS2	М	TIFF	TIFF
OS3	L		
OS4			

Pairwise Combinations 4 x 7=28

Windows		Source	Destination
Version	File Size	Format	Format
95	S	GIF	GIF
98	М	TIFF	TIFF
NT	L		
2000			

Windows		Source	Destination
Version	File Size	Format	Format
95	S	GIF	GIF
98	М	TIFF	TIFF
NT	L		
2000			

Pairwise Combinations 3 x 4= 12

Pairwise Combinations 2 x 2 = 4

Total Pairwise Combinations: 44

Example test condition:	OS1	L	GIF	TIFF					
							# of	total #	
							conditions	possible	%coverage
main coverage	OS1	L	GIF	TIFF			4	11	36%
pairwise coverage	OS1*L	OS1*GIF	OS1*TIFF _D	L*GIF,	L*TIFF _D	GIF _s *TIFF _D	6	44	14%

Raytheon

Integrated Defense Systems

Test Optimization using rdExpert²

- Utilizes Mathematical foundations of DOE & Applied Statistics
- Test & Evaluation Assessment
 - Analytically assesses existing test plan for its critical domain coverage utilizing Combinatorial Design Methods
 - Identifies specific test gaps
- Test & Evaluation Optimization
 - Generates balanced and optimized orthogonal test cases that reduce T&E cost, schedule and risk using d-optimal design algorithms
 - Prioritizes test cases for technical importance, cost, and/or schedule
 - Automatically generates test scripts/procedures ready for execution
 - Orthogonal array test design enables isolation of potential root causes of failure

T&E Assessment

- Evaluated existing test plan for its test coverage
- Identified 750+
 critical domain test
 coverage gaps

T&E Optimization

- Reduced test cases (10% less tests)
- Reduced T&E Risk:
 Eliminated all 750+
 identified test gaps
- Review & optimization effort took less than 1 man- week

Objective: Increased Critical Domain Test Coverage Effectiveness & Efficiency

Results Summary

<u>Test</u>	<u>Original Test Plan</u>	Optimized Test Plan
Subsystem Testing	28 Tests	8 Tests (71% reduction)
Systems Mission Testing	25 Missions	18 Missions (28% reduction)
Subsystem Simulation	100 Runs	40 Runs (60% reduction)
Range Testing	1036 Tests	632 tests (39% reduction)
Software Subsystem Testing	90 Tests	63 Tests (30% reduction
System Scenario Generation	8 Missions	6 Missions (25% reduction)
System MOE Testing	1600 Tests	885 tests (45% reduction)
System Testing	246 Tests	48 tests (80% reduction)

In each case, the reduction in number of test cases was achieved while maintaining or improving upon existing test coverage.

Case Study

Test Optimization

- Utilized a DOE to define the optimum number of experiments (A/C missions) to evaluate performance across the requirements test space
 - Prioritized Key Performance Parameters
 - Mandatory assigned to Test Event #1
 - Required and Desired assigned to Test Event #2
 - Prioritized utilizing details of the Performance Spec to define factors/constraints

History

- Original Flight Test matrix developed by grouping 'like' Verification Steps
 - A/C selected to meet point objectives
 - A/C flight profiles developed independent of 'requirement' space
 - Missions identified against specific objectives
 - Targets identified that could satisfy the objectives
 - Flight profiles and scenarios developed
 - A New Flight Test matrix desired to reduce number of A/C missions, but achieve the same or greater coverage of the requirements test space

Criteria of DOE Exercise

- Maximize re-use of existing missions to satisfy DOE experiments
- Maximize re-use of existing target performance parameters

DOE Applied to Flight Test Program

Test Optimization – Event #1

- Approach
 - Characterize the requirement 'test space' in terms of RCS, speed, maneuverability, altitude and range
 - Supplement resulting test cases with additional assets to capture other requirements such as external communication nodes, IFF, etc
 - Maximize re-use of existing missions to satisfy DOE experiments
 - Utilized known target performance parameters

Factor Name	No. of Levels	Level 1	Level 2	Level 3
Manueverability	3	high	medium	low
Speed	3	high	medium	low
Altitude	3	high	medium	low
Range	3	long	medium	short
Size	3	large	medium	small
Target Type	2	А	В	

	If Factor	is at level	then Factor	can't be
Constraint 1	Target Type	В	man	high
Constraint 2	Target Type	В	Alt	high
Constraint 3	Target Type	В	speed	med
Constraint 4	Target Type	В	Size	large
Constraint 5	Target Type	В	Alt	med
Constraint 6	Target Type	В	speed	high
Constraint 7	Size	small	Range	long
Constraint 8	Range	long	Alt	low
Constraint 9	Target Type	В	Size	med

Event #1 Experiment Results

N	Test lumber	Manuevability	Speed	Altitude	Range	RCS	Target Type
	1	high	med	low	short	large	A
	2	high	high	med	med	large	A
	3	med	high	high	long	large	A
	4	high	low	high	long	large	A
	5	low	med	med	long	large	A
	6	low	med	high	med	med	A
	7	low	high	low	short	med	A
	8	high	high	high	short	med	A
	9	med	low	med	long	med	A
	10	med	high	med	short	small	A
	11	med	med	high	med	small	A
	12	low	low	low	med	small	В
	13	med	low	low	short	small	В

Coverage/Risk Assessment

99.1% Critical Coverage

2-way Risk Assessment

hoject Structure Weight	ts About			
Project Shuchare	Analyon	Risk An	alysis	
⊖ new sc 1 July S	Coverage Analysis Too / Project Definition Ø Project Summery / Test Plan / Eactor Table	Selec	ct Analysis ser of Miss	(Type) [rescoverability Fusk] ing latter-Operability Combinations - 11
	O Domain Coverage O Traceability	Sr No	Combin	Description
	O Risk Analysis	111	13,51	man = high is not tested with RCS = small
		2	1-3, 6-2	man + high is not tested with Target Type + g
		3	21,62	speed - high is not tested with Target Type = g
		•	23,62	speed - med is not tested with Target Type - g
		5	32,43	All - fow is not tested with Range + long
		E.	31, 6-2	All - med is not tested with Target Type - g
		7	33.62	Alt = high is not tested with Target Type = g
			43,51	Range - korg is not tested with RCS - small
		3	43,62	Range - long is not tested with Target Type - g
		10	52,62	Size ned is not tested with Target Type = g
	I	11	53,62	Size large is not tested with Target Type = g
	I			
	I			
			-	
			-	
			-	
			-	
			-	
				Disallowed Combinations (Format 4.8,19,13-19,22)
				to fort
	<			

Experiments w Associated Targets

Experiment	Maneuverability	Speed	Altitude	Range	Size	Target Type	Scenario
	high	med	low	short	large	А	Mission A
1							
	high	high	med	med	large	А	
2							
3	med	high	high	long	large	А	
	high	low	high	long	large	А	
4							
	low	med	med	long	large	А	Mission B
5							
6	low	med	high	med	med	A	
7	low	high	low	short	med	A	
8	high	high	high	short	med	А	
	med	low	med	long	med	А	
9							
10	med	high	med	short	small	A	
11	med	med	high	med	small	A	Mission C
12	low	low	low	med	small	В	
13	med	low	low	short	small	В	Mission D & E

Raytheon

Integrated Defense Systems

Raytheon

Test Optimization – Event #1 Results^{Integrated Defense Systems}

- Results:
 - Before: "Baseline" Mission Matrix: Event #1 takes 9 weeks
 - 7 unique missions with 18 total presentations
 - After: "Optimized" Mission Matrix: Event #1 takes 6 weeks
 - 5 unique missions with 11 total presentations

DOE A Success! Number of Missions Reduced Targets and Scenarios Retained

Conclusion/Results

- DOE can be applied to Flight Test Program through evaluation of requirement test space
- Resulted in a reduced Flight Test Program schedule

Additional Resources

- Weblinks
 - rdExpert: <u>http://www.phadkeassociates.com/</u>
 - ACTS: http://csrc.nist.gov/groups/SNS/acts/index.html
 - ProTest: <u>http://homenet.ray.com/sixsigma/tools/sw</u>
 - General Information: http://pairwise.org
 - White Papers: <u>http://aetgweb.argreenhouse.com/papers.shtml</u>

Bios

Tonja Rogers is a Director of Systems Engineering who earned her Masters of Science in Electromagnetics from New Mexico State University. She joined Raytheon in 1981 and has supported the development and test of numerous tactical systems such as Patriot, HAWK, Standard Missile, Cobra Judy, Zumwalt, and THAAD, Her roles have spanned the system life cycle from requirements development, models and simulation, manufacture assembly and test, to live fire field test. She is currently the Test Architect for a Cruise Missile Defense System program.

Peter Kraus is an Engineering Fellow focusing on Statistical Engineering training and consulting efforts within Raytheon Integrated Defense Systems. Peter is presently responsible for implementing Design for Six Sigma techniques across Engineering and Operations to achieve Mission Assurance. Peter earned a Masters Degree in Mathematics from Northeastern University and a Ph.D. in Operations Research from the University of Massachusetts-Amherst.