Joint Light Tactical Vehicle (JLTV) Automotive Requirements Development

Dr. Gregory Schultz, Ms. Camille Robbins
March 13, 2012
Overview

• US Army Aberdeen Test Center (ATC) recently finished Technology Demonstration (TD) testing of the JLTV, supporting testing at ATC, Yuma Test Center (YTC), and Accredited Test Services (ATS)

• With the support/encouragement of Program Manager (PM)-JLTV, ATC influenced and enhanced the acquisition process
 – Note: Existence of the TD test phase gave ATC a unique opportunity to interface more with the PM office and re-think the role of testers and our methods
 • Testing is conducted to reduce risk!

• Today’s presentation will highlight our contributions
TD Vehicle Demonstrators

JLTV Technology Demonstrators
JLTV TD Phase Overview

- JLTV Family of Vehicles Technology Demonstration (aka “Tech Demo”) testing occurred May 2010 – May 2011

- Test Objectives:
 - Shakedown Purchase Description requirements
 - Demonstrate prototype vehicles and new technologies
 - Electronic stability control, active suspensions, on-board power generation, integrated Command, Control, Communications, Computers, and Intelligence (C4I)
 - Identify and develop new test methodologies to deal with new technologies and related safety risks
 - Fording of high voltage systems can present additional risks
ATC’s Roles During TD

• Army Aberdeen Test Center (ATC)
 – Automotive performance (17 vehicles)
 – Reliability, Availability, Maintainability (RAM) of Australian vehicles (2 vehicles)
 – Power management
 – Integrated C4I
 – Transportability
 – Human Factors
 – Toxic Fumes
 – Test Course Characterization (Profilometer and instrumented Land Rover)
 – Weapons compatibility

• Yuma Test Center (YTC)
 – Instrumentation support for RAM (9 vehicles)
 – Test course characterization (Profilometer and instrumented Land Rover)
 – Measurement of vehicle loads on RAM courses
ATC’s Roles During TD

• Accredited Test Services
 – Located in Monegeetta, Victoria, Australia
 – Instrumentation support for RAM (5 vehicles)
 – Test course characterization (Profilometer and instrumented Land Rover)

• Engineering Research and Development Center (ERDC)
 – Located in Vicksburg, MS
 – Vehicle support
 – Technical interface with PM-JLTV
Automotive Performance Tests

- Vehicle Characteristics
- Standard Obstacles
- Grades and Slopes
- Steering and Handling
 - Including Electronic Stability (ESC) testing
- Ride Quality
- Speed and Acceleration
- Braking

- Full-load Cooling
- Soft-Soil Mobility (support ERDC)
- Central Tire Inflation System (CTIS)
- Fording
- Fuel Consumption
- Weapon Compatibility
- Armor Compatibility
TD Planning

• Sorted all requirements into “testable” categories
 – Requirements initially grouped by vehicle subsystems
 – Re-grouped the requirements by pre-existing functional test teams at ATC
 – Some requirements spanned more than one test team and were identified early

• Drafted Detailed Test Plan (DTP)
 – ATC functional groups worked with PM staff to review requirements and draft the detailed test plan
 • Hundreds of requirements reviewed
 – Subtest priority list was developed based on:
 • Need to inform PM of results from high risk requirements early
 • Safety information required to support the Limited User Evaluation (LUE)
 • Cost and time considerations
ATC Functional Groups

<table>
<thead>
<tr>
<th>Performance Engineering</th>
<th>Controls & Test Automation (CTIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering & Handling</td>
<td>HFE</td>
</tr>
<tr>
<td>Braking</td>
<td>Environmental</td>
</tr>
<tr>
<td>Towing & Recovery</td>
<td>Road Shock & Vibration</td>
</tr>
<tr>
<td>Fuel Consumption</td>
<td>Chemical Sampling Branch</td>
</tr>
<tr>
<td>Full Load Cooling</td>
<td>Transportability</td>
</tr>
<tr>
<td>Mobility</td>
<td>Generator Test Site</td>
</tr>
<tr>
<td>Speed & Acceleration</td>
<td>Electromagnetic Interference (EMI)</td>
</tr>
<tr>
<td>Gradeability & Side Slopes</td>
<td>C4ISR</td>
</tr>
<tr>
<td>Standard Obstacles</td>
<td>RAM/ILS</td>
</tr>
<tr>
<td>Vehicle Characteristics</td>
<td>HFE</td>
</tr>
<tr>
<td>Fording</td>
<td>Weapons Compatibility</td>
</tr>
</tbody>
</table>

- **HFE**
- **Weapons Compatibility**
- **Environmental**
- **Road Shock & Vibration**
- **Chemical Sampling Branch**
- **Transportability**
- **Generator Test Site**
- **Electromagnetic Interference (EMI)**
- **C4ISR**
- **RAM/ILS**
TD Planning

- Identified instrumentation, methodology, personnel, and facilities needed to execute new/unusual test requirements:
 - C4ISR bay station assembled to support data transfer
 - Military Operations on Urban Terrain (MOUT) course built to reflect Operational Mode Summary/Mission Profile (OMS/MP)
 - Initial Electronic Stability Control (ESC) test processes determined
 - Robotic operator for fording with high voltage systems required
- Coordinated test planning and provided resources across multiple test centers
 - Created synergy across all test centers by utilizing the same test methodologies, instrumentation, data collection process
MOUT Course Obstacles

Rubble Pile

Construction of Staircase
TD Planning

• Lessons Learned
 – Identified non-testable requirements:
 – “The ground pad on each rear stabilizer leg shall have sufficient ground contact area to support the JLTV-T at GVW under wet and muddy conditions.”
 – No clear pass/fail criteria, multiple ways to interpret success
 – Identified conflicting or competing requirements

ATC communicated potential issues like these with PM-JLTV so they could be addressed by the respective Subject Matter Experts (SMEs)
TD – Test Execution

• Traditional Role - Test Execution

• Enhanced Roles:
 – Attended PM Knowledge Point (KP) reviews
 • Provided insight from testing
 • Proposed requirement improvements
 – Attended PM System Engineering meetings
 • Provided additional technical assistance to system engineers drafting and modifying PD requirements
 • Proposed new PD requirements to improve reliability and reduce safety risks
 – ATC personnel served as SMEs to assist PM-JLTV and contractors with failure mode analysis
Post-TD and Pre-EMD

• Traditional Roles
 – Write reports
 – Identify and discuss lessons learned
 – Update Test Operating Procedures (TOPs) to reflect current technologies and lessons learned
 – Develop new TOPs as needed
 – Participate in Test and Evaluation Master Plan (TEMP) reviews

• Enhanced Roles
 – ATC worked with PM staff to draft new requirements to reduce risk in addressing user needs
 – Conducted additional excursion tests to better “inform the requirements”
 – Supported contractor and TARDEC modeling and simulation efforts by making extensive force environment and terrain data available
 • Intent is to help vendors build better military trucks
 – Currently working on means to accelerate durability testing
Summary

• ATC is focused on helping PM/Army reduce risk on JLTV program
 – Testing is all about reducing risk
• Influenced PD Requirements
• Developed draft test protocol for ESC testing
 – Never done before on military vehicles of this class
• Created sets of force and terrain data to help vendors improve designs and to assist TARDEC with analysis
 – Includes YTC and ATC off-road terrains
Questions?

• PM-JLTV
 – Mr. John Wozniak, Army JLTV APM
 586-239-5416, john.louis.wozniak@us.army.mil
 – Mrs. Erin Thompson, USMC JLTV T&E Lead
 703-432-5152, erin.thompson@usmc.mil

• ATC
 – Ms. Camille Robbins, ATC JLTV Test Officer
 410-278-8831, camille.e.robbins.civ@mail.mil
 – Dr. Gregory Schultz, ATC Senior Test Engineer
 410-278-3510, gregory.a.schultz.civ@mail.mil
 – Mr. Frederick Scriba, ATC JLTV Test Officer
 410-278-5380, frederick.j.scriba.civ@mail.mil