

46TH TEST WING

Full Battlespace Test

Flight Testing the ARDS Service Life Extension

Wayne T. Hostilo Eglin AFB FL

Distribution Statement "A" - Approved for public release; distribution unlimited.

Advanced Range Data System

- •A brief history of GPS on the Test Range
 - •Challenges faced with aging technology and the acquisition process
 - Challenges met through Government engineering and teamwork

BACKGROUND

Full Battlespace Test

ADVANCED RANGE DATA SYSTEM (ARDS)

- GPS/INS based TSPI system used on fighter aircraft and other platforms
- Provides data in real-time back to a control display center through ground stations and relays
- Common system used by DoD for DT&E

HISTORY

- Army/Air Force/ Navy joint program late 1980's
- Development flowed from
 - Full Scale Early Development (FSED)
 - Low Rate Production (LRP)
 - Full Rate Production (FRP) with several upgrades done afterwards
- Anticipated life span of 8-10 years from FRP
- Follow on Tri-Service upgrades to the system failed to materialize and ARDS reached critical mass by 2006
- ARDS Service Life Extension (SLEP) effort started in 2006 with funding in 2007-2010

SUSTAINMENT PROBLEM <u>& GOALS</u>

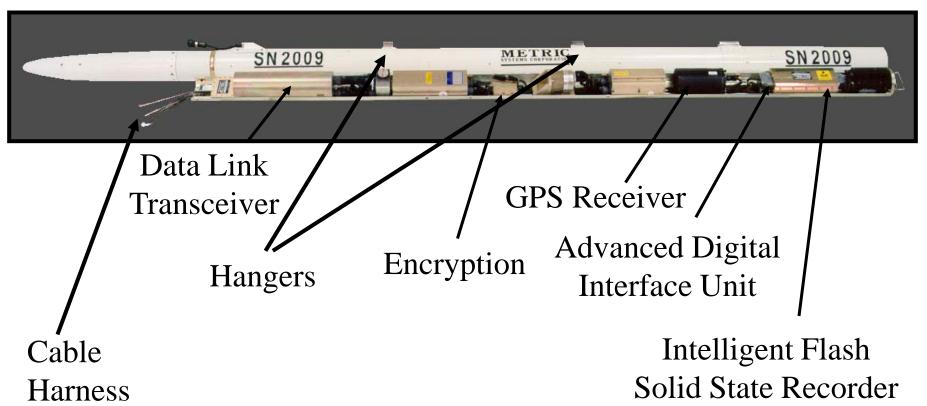
Full Battlespace Test

Sustainment problems

- Non-repairable items
 - **GPS** receiver
 - **Processor**
 - Data recorder memory media
- Lack of documentation to re-procure

Goals of the Sustainment effort

- Develop form-fit-function replacements components where possible and develop multiple sources for hardware
- Maintain current performance capabilities as a minimum.
- Eliminate proprietary hardware and software wherever possible



IN-HOUSE GOVERNMENT EFFORTS

- Tri-Service Team Effort
- Eglin's form-fit-function replacement development efforts
 - Capable government engineering base and empirical knowledge of ARDS
 - Good working relationship with Services and industry
 - Dynamic partnership with the ARDS Sustainment Management Office (SMO)

The ARDS Pod

Components Old and New

Full Battlespace Test

- Data Link (MODEM + Power Amp)
- EDIU Digital Interface Unit
- **GPS** Receiver

- EFSSR USB Data Recorder
- Isolation Box (Aircraft interface)

Pod hanger

New Technology Provides Benefits

Full Battlespace Test

GPS Accuracy

Carrier Phase processing with very low cost software

Processing Speed

 On board processing provides for upgrades to performance as required

Data Recording Capacity

 The ubiquitous USB provides hours and hours of high rate data collection

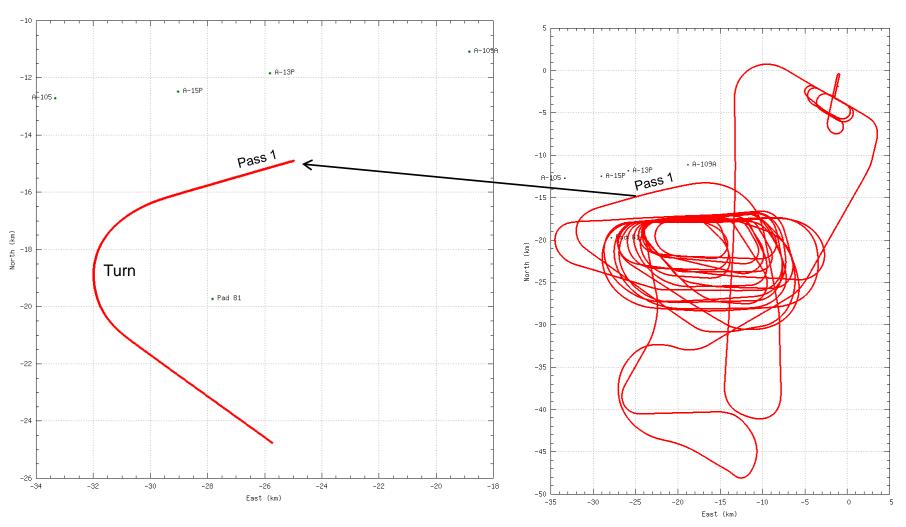
Power Amplifier Efficiency

Cleaner cooler power

Our Test Jet

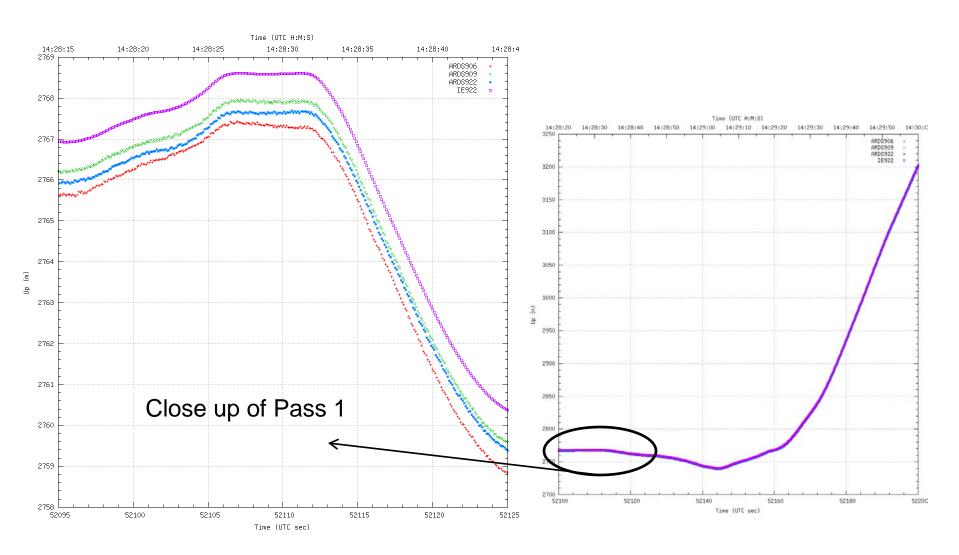
MK-82s and TSPI PODs

Distribution Statement "A" - Approved for public release; distribution unlimited.

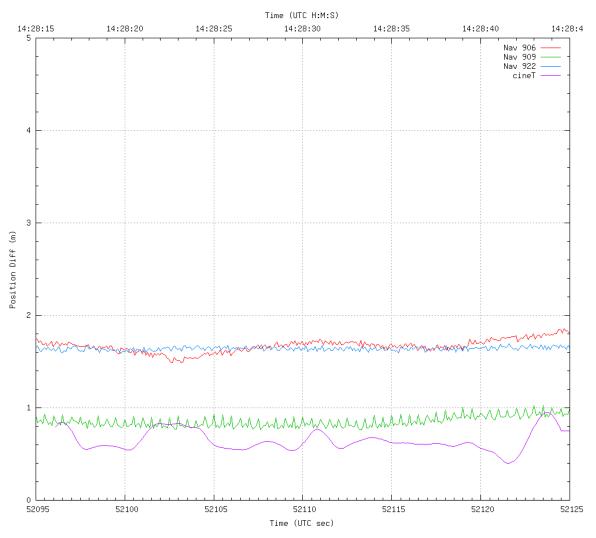

Pass 1 Setup Mission 6861

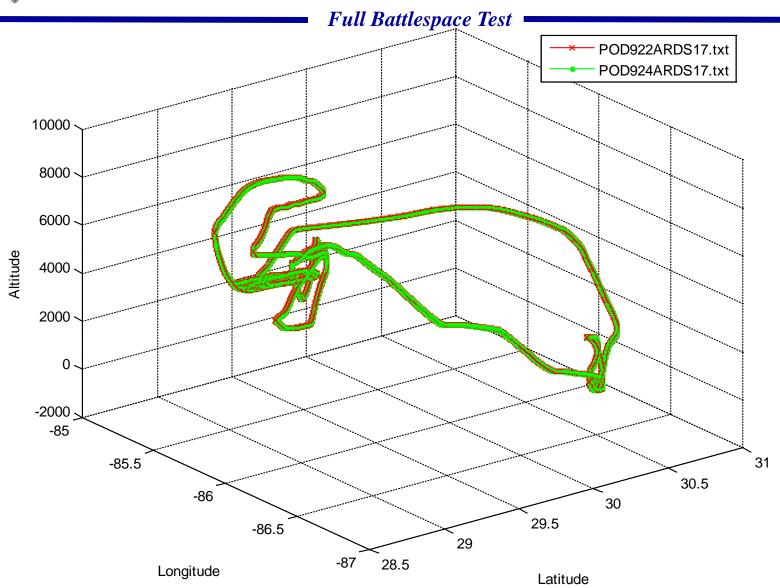
- •F16 with 6 MK82 Inert Bombs and 3 GPS Pods
 - •Pod 906: ARDS GNP 10 on F16 Station 2, Pitch -3 deg
 - Pod 909: ARDS II DIGS on F16 Station 9, Pitch -3 deg, Roll -90 deg
 - Pod 922: ARDS II ENGR on F16 Station 8, Pitch -3 deg
- •Pass 1 executed at ~9000 ft altitude 1.5 nm south of beach Cine-T sites.
 - A-105 MSL 42.659 ft
 - A-109A MSL 33.992 ft
 - A-13P MSL 15.335 ft
 - A-15P MSL 19.253 ft
 - Gulf Range Armament Test Vessel (GRATV), Pad 81
- •All data mapped into CCF STD file format, dumped, and plotted

LTP Ground Track (Pass 1 + Turn)


Full Battlespace Test

Distribution Statement "A" - Approved for public release; distribution unlimited.


LTP Height (Pass 1 + Turn)


Pass 1: Position Comparison

- •Mission date 9-29-2011.
- •The ARDS Nav message for pods: 906, 909, 922 are compared to post-processed Waypoint Inertial Explorer (IE) 922 solution (GPS Ref. Ant. at A-13B) are lever armed to the CG
- The TDOP CineT solution is compared to the IE 922 solution lever armed to the nose.
- •CineT data was processed for the F-16 noise for Pass 1, which was a flyby at 9000 ft altitude and 1.5 mi. south of the CineT array.
- Estimated CineT position uncertainty is .5 to 1 m Std.Dev
- •The IE Novatel SPAN solution for Pod 922 is about 0.6 m from the CineT solution.

3D - Position Plot

LESSONS LEARNED

- •Pay me now, or pay me later, with interest and penalties
 - •Very early in the ARDS program the expense of documentation and software code were adopted as trade space
 - Proprietary engineering needed for sustainment of this system became a strangle hold the services could no longer afford
- •TSPI accuracies claimed and those that can be demonstrated are all subject to lots of interpretation
 - •Our newest Carrier Phase solutions provided the new 'truth' but even this can and is challenged
 - Comparative results met our "at least as good as" requirement
- Preserve the centers of excellence in engineering and technical design
 - •This one factor saved the ARDS mission from certain death or at least a much more expensive existence

Contact Information

Full Battlespace Test

Systems Engineering

John Murchison or Sam Windham

46 TSS

Phone: 850-882-2337

DSN: 872-2337

303 N. 7th Street, Suite 205

Eglin, FL 32542

john.murchison@eglin.af.mil

Data Processing

Jerry Radke of Aaron Tarnosky

46 RNCO, TSPI Analyst

Phone: 850-882-8679

DSN: 872-8679:

201 W. Eglin Blvd, Rm 228

Eglin, FL 32542

jerry.radke@eglin.af.mil