Technology Applications Program Office

"Deeds Not Words"

Program Overview

Special Operations Forces Industry Conference 2012

TAPO Charter

 Responsible for life-cycle program management of the Army Special Operations Aircraft (ARSOA) fleet

A/MH-6M, MH-60L/K/M, MH-47G

- Single customer focus: 160th SOAR(A)
- Involved from Concept Refinement through Disposal
- Provide continuous Sustainment and Modernization
- Support growing rotorcraft fleet
- Manage the USSOCOM RW Aviation NVD and AASE Programs
 - Joint responsibility
 - Services Air Force Special Operations Command and Navy
- Item Manager for all Special Operations Aviation (SOA) unique components and equipment

Army Special Operations Aviation Command

SOA Acquisition Team

Lean, responsive, and adaptable enterprise focused on equipping the soldiers of the 160th SOAR(A) with the most capable rotary wing aircraft in the world

Systems Integration and Management Office (User Rep)

Portfolio Overview

Platform Fielding / Upgrades

MH-60L MH-60K **MH-60M**

- Production / Fielding

- Resolving Tech Issues

MH-60M

MH-47G

- Reconstitution
- DAFCS Integration
- Electrical Upgrade

- "New Build" Machined

MH-47G

MH-6M

- Crashworthy Seat
- 3.0 Block Upgrade
 - Rotor & Structure
 - Cockpit & Avionics

MH-6M

Integrated Mission Systems

Aircraft Survivability

Avionics

Sensors and Weapons

- Endstate: 3 RW Aircraft Configurations
- Common Mission Suite
 - Common Avionics (CAAS)
 - Q2 FLIR System
 - Multi-Mode Radar
 - Advanced ASE (SIRFC / IR / HFIS)
 - Future DVE Integration

MH-47G

Rebuild Airframe Structure (New Elect. Wires/ Hydraulic Lines) Standardize Aircraft
Max Gross Wt (54,000 lbs)

CMWS & SIRFC

CAAS Cockpit

Cockpit Structure New Build

Vibration Reduction (Airframe Stiffening)

Refueling Probe

New FLIR

Dual Mode Searchlight (IR & White Light)

Component Recapitalization

<u>Legend:</u>

CH-47F Common SOF Provided

Enhanced
Air Transportability
Provisions

Expanded Left-FWD Gunner's Window

Left-Aft Gunner's Window

Standardized Engines
With IES-47 Suppression

Multi-Mode Radar

Standardized Extended Range (Fat Tank)
Configuration

Improved Bilge Paint & Corrosion Protection

MH-47G

SLEP

- Remanufactures a combination of CH-47D and MH-47E airframes into MH-47G configuration
 - -Production Complete
- Block Upgrade strategy to integrate SOF unique modifications
 - -Includes Block 2.0-2.3
 - Block 2.2 includes accelerated integration of DAFCS
 - -Block 2.3 includes:
 - Digital Intercom
 - 3rd/4th ARC-231
 - AC/DC Pwr Upgrades

New Build

- Completes NRE to integrate MH-47G SOF unique mods into a machined frame
 - Leverages CH-47F
 - Leverages Canadian H-47
- Common system configuration with latest fielded aircraft
- Produces 8 New Build aircraft
- Allows for future combat loss replacement

Reconstitution

Boeing

- Remanufacture fuselage
- Splices new nose (41 Section)

Summit Aviation

- Install hydraulic tubing
- Limited Over and Above repair
- Prep for shipping and storage

SOFSA

- Install Engines and Transmission/Dynamics
- Conduct 2.1/2.2 modifications
- Install SOF unique components
- Ground / flight test
- Unit acceptance

160th Delivery

- Rapid response to aircraft loss
- Aircraft equipped with latest modifications
- Cost savings to command
- Maximum flexibility

MH-47G Modernization Upgrades

Advanced Parallel Actuator System (APAS)

- Replaces existing Flight Control Pallets at STA 120 and 95
- Improved safety (i.e. Pilot situational awareness, Redundant systems, Improved control laws)
- Enable pilots to use maximum performance and increase productivity

Engine Control Unit (ECU)

- Increased Reliability and Maintainability
- Improved troubleshooting and upgrade capability
- •Common with CH-47 fleet
- •Currently fielding -02

Advanced Boresight (ABE)

- •Enables more efficient alignment of aircraft sensors and nav systems
- •Reduces O&M cost
- •Common STTE with MH-60 fleet

Side Facing Gunner's Seat (SFGS)

- Integrates 4xMartin Baker MFOS Seats8G,300# Occupant Crash Load (All Axis)
- •Ballistic tolerant
- •Decreases fatigue level of the aft crew member and mitigate associated safety and operational risks

Advanced Chinook Rotor Blade (ACRB)

- •Increase lift approx 2,000 lbs @ 4K/95F
- Manufacturing and repair improvements
- Rotor Hub is common to current blades
- •Common with CH-47 Fleet
- •Fielding begins FY16

Engine Inlet Filter

- •T55 Engine Air Particle Separator (EAPS) does not meet SOAR needs (i.e. power impact, weight, maintenance)
- Exploring lightweight, low-drag, littleto-no power impact T55 engine inlet filtration system to limit the ingestion of sand, rock and dust
- Similar solutions exist (UH-60M)

MH-60M

Integration Methodology

Structural Design

- Increase GW to 24,500 lbs
- Structural enhancements to base airframe and dynamics analysis

Propulsion

- Commercial Off the Shelf Engine
- FADEC Software Design

Honeywell

Raytheon

Rockwell Collins

Mission Equipment

- Commonality with MH-47 Fleet
- Upgrades 60kVA Generators

Special Operations Forces Support Activity

Integrated Design and Production

- Sub-structure and Mission Equipment
- Production of 72 MH-60M Aircraft

Test, Evaluation, and Airworthiness

- Government executed DT
- Airworthiness via AED, AMRDEC

MH-60M Production and Fielding

SOFSA GOCO (LMCO) builds MH kit 1 year prior to install

TAPO procures 61 GFE components and provides to SOFSA Warehouse ISO Production and Provisioning

Hoist

YT 706 Growth Engine

UH-60M

UH-60M "Baseline" Aircraft Deliveries

UH-60M LRIP - Fort Rucker

UH-60M New Production - Sikorsky Aircraft

SOFSA GOCO (LMCO) Lexington, KY

Depopulate UH-60M unused components and return to UHPO

13 month Modification

- GW increase to 24,500 lbs
- Growth Engine Integration
- SOF Mission Equipment

Field aircraft to 160th SOAR(A)
FY11-FY15

11

Fly A/C to DeMod Facility and Harvest SOF components; A/C turn-in FY12-15

Integration Methodology

A/MH-6M Block 3.0 Upgrade

Purpose

- 1. Safely extend the usable life of the fleet and keep the aircraft in the fight until a replacement is available
- 2. Restore structural, performance, and safety margins for the aircrews
- 3. Provide an acceptable level of SA in the cockpit and accommodations for rapid integration of future capabilities

Avionics Upgrades

An avionics upgrade to replace obsolescent components and provide basic SA (NDI/COTS) (**Not** a development program for state of the art mission processors, displays, or cockpit software)

SRTV Rover 6 / Vortex

Legacy CMS Cockpit

Digmap Processor

CAAS Light (CASSL)

Main Rotor, Tail Rotor, FADEC

A main/tail rotor drive train and engine control replacement effort to reduce airframe loads and restore safety and performance margin (**Not** a Government sponsored rotor blade development program).

Improved Rotor Systems

Dual Channel FADEC

Airframe Upgrades

An airframe structural modification that address structural failures due to high intensity, high gross weight operations, and a decade of battle damage (*Not* a complete redesign of the basic airframe features)

Mission Equipment (MH-47G/MH-60M)

Requirements

<u>Programs</u>

End State

Aircraft Survivability Equipment

Multi-Spectral Threat Detect and Defeat Radar (RF) Infra-Red (IR)

Laser Small Arms/RPG Ballistic Protection

Integrated Advanced ASE

Sensors and Weapons

Navigation Terrain Avoidance Targeting Electro-optic FLIR

Multi-Mode Radar
Degraded Visual Environment (DVE)

Common Sensor/ Weapons Suite

Avionics and Software

Situational Awareness Digital Connectivity Airspace Management Common Avionics Networking

Navigation

Common Cockpit

Common Mission Suite - MH-60 and MH-47

Mission Equipment (A/MH-6)

Requirements

Programs

End State

Aircraft Survivability Equipment

Multi-Spectral Threat Detect and Defeat

Ballistic Protection

POM Issue for LIRCM

Light Weight

ASE

Sensors and Weapons

Navigation Terrain Avoidance Targeting FLIR

Degraded Visual Environment (DVE)

AN-ZSQ-3 (V2) LRF/LD Capability

Avionics and Software

Situational Awareness Digital Connectivity Airspace Management Common Avionics Networking

Navigation

CAAS Light Cockpit

.Common Mission Suite - Attack and Assault

Advanced Aircraft Survivability (Roadmap – Past, Present and Future)

Advanced Aircraft Survivability

(Present)

Advanced Aircraft Survivability

(Future)

- Same functionality as ATIRCM Multi-Service fleet-wide solution
- Improved reliability, reduced weight and
- The new configuration will include:
 - IR Pointer Tracker(s)
 - Pointer Tracker Control Unit(s)

 - CMWS normal 5-Sensor system configuration

Hostile Fire Indicating System (HFIS) According Processo Avience Buses

- Purpose: Detect/Classify/Alert of small caliber, AAA & RPG fires
- Goals: Multi-Spectral (UV IR Acoustic) Integrated & Geolocated Threat Alerts through SIRFC LRU-1 to Dedicated Electronic Warfare Display (DEWD) for evasive/counter fire actions

Purpose: (Pilot Protection) Replaces opaque armor with transparent armor

Two options: Multiple Impact Transparent Armor System (MITAS); Transparent Ballistic Protection System (TBPS) Goals: Reduce weight without sacrificing ballistic protection; improve pilot FOV

Sensors Roadmap

EO/IR Sensors Systems (1st Generation)

Q-16B, & Q-16D 151 & 182 lbs.

1st Gen Capabilities

- LWIR
- Laser Range Finder
- Laser Designator

AN/ZSQ-2

(V2 - Attack)

Current EO/IR Sensors Systems (2nd Generation)

2nd Gen **Capabilities**

- MWIR
- Day CCD
- 12 CCD
- Image Fusion
- Laser Pointer
- Laser Range Finder
- Laser Designator
- · Laser spot tracker

AN/ZSQ-3 (V1 – Assault)

AN/ZSQ-3 (V2 – Attack)

80 lbs

TAPO Partnering With Industry

Future EO/IR Sensors Systems (3rd Generation)

- Two color engine
 - LWIR/MWIR
 - MWIR/SWIR
- High Definition
- SWIR (see laser spot)
- LIDAR (see thru brownout/foliage)
- Distributed Aperture
- New System for LCR

Leverage S&T, Big Army, Other Service Efforts

Legacy Force

Bendix King 1400 Weather Radar

Primus 700 Weather Radar

Weather Radar Only

Current Force

AN/APQ-174B Multi-Mode Radar

- Weather
- Terrain Following/Terrain Avoidance (TF/TA)

UNCLASSIFED

Future Force

Weather

• TF/TA

LPI/LPD

- Turbulence
- Air to Air

Silent Knight Radar (SKR)

- 70 lbs. lighter • Digital Radar
- Maritime
 - Anti-Ice Radome
- Wind Shear Single LRU

• Growth Capacity 20

DVE Architecture

• DVE Building Blocks:

Foundation based Aircraft Flight Control System

Symbology and Pilot-Vehicle Interface (PVI)

- Display
 - Heads Up
 - Helmet Mounted
 - Flat Panel
- Software Architecture (FACE Compliant)
- See-thru Sensor Integration
 - LIDAR/LADAR
 - 94GHZ Radar
 - LW IR
- Future Integration:
 - Dual Band Sensor
 - Network Controller
 - DARPA MFRF
 - Passive TF/TA
 - SKR SAR mode
 - Weather

UNCLASSIFED 21

Advanced Aircraft Flight Controls

Digital Flight Control System, Advanced Parallel Actuator, Modernized Control Laws

Common Avionics Architecture System (CAAS)

22

1-60 CAAS Cockpit

- Identical Architecture for MH-47/60
 - Single Software / Hardware Configuration
 - Consolidated crew station working groups and integrated roadmap
 - Hardware commonality reduces logistics complexity and footprint
 - Training material, devices, methods shared between platforms
- Fusion center for all data / situational awareness
- Future Synthetic Vision Integration

Discussion / Questions

