Success in Venting Penetrator Warheads
2012 Insensitive Munitions & Energetic Materials Technology Symposium
May 16, 2012
Background

War-winning Capabilities…On Time, On Cost

- General Purpose Bombs IM improved through venting
 - 500lb, 1000lb, & 2000lb GP warheads
 - Primarily aft venting
 - Common Air Force & Navy Configurations
 - BLU-111, BLU-110, and BLU-117 in production

- Penetrators - IM Improved Designs
 - BLU-109
 - BLU-122
Penetrator IM Improvements

New Eutectic Aft Cover Closure Ring
- Developed for BLU-109 (Common AF & Navy)
- Common in BLU-122
- Releases Flawlessly in Test

New Eutectic Nose Vents
- Developed for BLU-122
- Transitioned to BLU-109
Penetrator Aft Closure Plate

War-winning Capabilities...On Time, On Cost

Ultra High Molecular Weight (UHMW) Polyethylene (UV stabilized)
VENT PLUGS

FUZE WELL RETAINING RING

FUZE WELL

AFT CLOSURE PLATE
Eutectic Retaining Nut

War-winning Capabilities...On Time, On Cost
Aft Closure Test Results

War-winning Capabilities…On Time, On Cost

![Image of warhead components: Warhead Case, Aft Closure Plate, Eutectic Retaining Ring]
Nose Venting Concepts

War-winning Capabilities…On Time, On Cost

• Large Frontal Plug
 – Eutectic O-ring to release
 – Pins to prevent rotation
 – Weep holes for eutectic

• Six Vent Holes
 – Eutectic reservoir to flow into vent holes
 – Eutectic melts at 281°F (138°C)
 – Asphaltic Liner applied at 350°F (176.7°C)
Modeling To Validate Design

War-winning Capabilities...On Time, On Cost

- **Stress in the BLU-122 Nose Area**
 - Oblique impact – worst case
 - Different hole sizes considered
 - Not significantly higher stress than without holes
 - ¾ inch diameter holes selected
Nose Venting Solution

War-winning Capabilities...On Time, On Cost

- **Eutectic Pin**
 - Vents Pressure Build-up
 - Installed after Tar Lining
 - Environmental Sealed
 - with RTV (room temperature vulcanization) **Blue Gasket Maker**
Testing the Nose Vent

War-winning Capabilities…On Time, On Cost

• Plug design for nose vents
 – Tested FCO & SCO – pass
 – Sled tested inert and live fills
 – Warhead structurally sound

Sled Test – Survives

Fast Cook-off – Vents
Sympathetic Reaction Mitigation

Concept

War-winning Capabilities...On Time, On Cost

• Modeling Supports Blast Mitigation
 – Pumice Panels Designed
 – Shroud over Protruding Tail of Warhead
 – Use Existing Pallet
IM Test Results

War-winning Capabilities…On Time, On Cost

<table>
<thead>
<tr>
<th></th>
<th>BLU-109C/B (Eutectic Aft)</th>
<th>BLU-109 with nose vents</th>
<th>BLU-122/B</th>
<th>BLU-122X/B with nose & tail vents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Cook-off</td>
<td>IV</td>
<td>(V)</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Slow Cook-off</td>
<td>IV</td>
<td>(V)</td>
<td>II</td>
<td>V</td>
</tr>
<tr>
<td>Bullet Impact</td>
<td>VI</td>
<td></td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>Fragment Impact</td>
<td>IV</td>
<td></td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>Sympathetic Reaction</td>
<td>F</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Shaped Charge Jet</td>
<td>P</td>
<td></td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Legend

- Detonation: I
- Partial Detonation: II
- Explosion: III
- Deflagration: IV
- Burn: V
- No Reaction: VI

No Reaction Example: Bullet Impact
Path Forward

War-winning Capabilities…On Time, On Cost

Refine the IM Design
- Incorporate in Production
- Safer Weapons
- Maintain or improve lethality
ACKNOWLEDGMENTS

War-winning Capabilities…On Time, On Cost

Project Lead – Mr. Randy Black
Design and Drafting – Mr. Barry Cantrell & Mr. Frank Zaborowski
Modeling and Simulation – Dr. Brian Plunkett & Mike Gunger
Project Engineer – Mr. Norm Babbitt
Test Engineers – Capt. Jason Moran, Capt. Oscar Palomino, Mr. Chuck Schneider, & Mr. Brad Pattullo

Naval Air Warfare Center – Weapons Division, China Lake
IM Test Facilities
846th Test Squadron, Holloman AFB
High Speed Test Track