DEMNB-based IM Formulations for the 120mm Mortar

2012 IMEMTS 14-18 May 2012

Approved for public release; distribution unlimited.
Technical Objective

Objective – IM Compliance

- Develop melt cast insensitive explosives to replace TNT-based fills which currently fail most (or all) IM tests
- IM demonstration for Army artillery and mortars
- Maintain (or improve) performance requirements of TNT-based fills

Co-solidified nitrate salt eutectic system (DEMN)

- Nitrate salts
 - Easily manufactured in high yield
 - Nitrate salts available at low cost
- Added particulate energetic materials
 - Tailor sensitivity
 - Increase Performance
- Low melt for steam processing
 - Compatible with existing LAP facilities
 - Reduced loading and processing cost

Approved for public release; distribution unlimited.
Background – DEMN-based Replacements for TNT

DEMN-III J (IMX-103)

- Characterized for performance (D_V, Gurney energy, initiability, fragmentation) & sensitivity
- PM-CAS downselected DEMN-III J as backup candidate for M795 transition
- Significant IM gains demonstrated in M795 155 mm projectile successful
 - Passes 4 of 6 Tests
 - First formulation to pass sympathetic detonation in 155 mm M795 artillery projectile **WITHOUT** a barrier!
- Pilot Plant Loading at ARDEC (4/4 acceptable projectiles with minimal engineering controls)

IM Scorecard for the M795 artillery projectile

<table>
<thead>
<tr>
<th>Explosive Fill</th>
<th>BI</th>
<th>FI</th>
<th>SCO</th>
<th>FCO</th>
<th>SD</th>
<th>SCJI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>III</td>
<td>I</td>
<td>(I)</td>
</tr>
<tr>
<td>IMX-103</td>
<td>IV</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>III</td>
<td>I</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.
Build on Success of DEMN-III J

- Add sensitizing agent
- Achieve Comp B performance
- Demonstrate initiation and IM Response

M934A1 120mm Mortar (Comp B explosive fill)

- Melt cast design
- Embedded PBXW-14 supplemental charge
- Replace CH-6 with less sensitive
- 1090 mild steel body
- M734A1 Modified Multi-option Fuze (PBXW-14 fuze booster)

Comp B fails ALL IM tests in 120 mm mortar
- 0.50-cal AP round into mortar warhead center of mass
- Flash on impact and exit (also seen in 0.50-cal BI test on M795 projectile)
- Mortar body breakup
- Ejection of reducing adapter/fuze
- Scattering of numerous pieces of unreacted material and 3 mortar pieces

Approved for public release; distribution unlimited.
Improved BI Response

- **Mild response** (mortar body in 3 pieces)
 - High Recovery
 - 99.8% of mortar body
 - 92.5% of unreacted explosive
 - PBXW-14 Supplemental charge recovered
 - Fuze/adapter recovered 52’ from test stand

- **Type IV response**
 - Deflagration
 - Type I – Detonation for Comp B

Approved for public release; distribution unlimited.
Fragment Impact Test

- Flash on impact
- Mortar body translation
- Ejection of fuze/adapter

STANAG fragment at 6000 ft/s into mortar warhead center of mass
Ignition of DEMN fill in mortar body

- Ejection and burning of W-14 supplemental charge
Mild response
- Mortar lands 16’ from table in 1 piece
- Contents burn to completion
- Remnants of PBXW-14 supplemental charge can
- Fuze/adapter recovered 32’ from test stand

Type V Burn response
(Type I – Detonation for Comp B)

Ignition of DEMN fill in mortar body
Slow Cookoff Test

- Disposable sheet metal oven
 - Heater cartridges
 - Blower/circulator fan
 - Heated at 50°F/hour

- Type III Explosion response
 - Minimal pressure
 - 41.5% of mortar body recovered
 - Minimal witness plate scarring

- Better venting mechanism needed
Two shipping containers
 - Each holds 2 mortars in fiber tube
 - 1 up, 1 down
Donor (yellow, nose up) - functional initiation
Adjacent Acceptor (pink, nose down)
Diagonal Acceptor (green, nose up)
Inert (unpainted, sand-filled)

Initiation train
 - RP-87 detonator
 - M734A1 Fuze modified W-14 booster in reducing adapter
 - W-14 supplemental charge in crimped aluminum can

Witness plate
 - Scarring demonstrates detonation in donor round
 - Obturator groove markings (lack of)
Non-Detonative Response of Acceptors

- **Adjacent mortar body**
 - Several pieces recovered (40-120’)
 - Tail fin, supplemental charge, fuze/adapter
 - Scarring on half of witness plate

- **Diagonal Mortar body**
 - Split at thin-walled obturator groove
 - Each half filled with unreacted explosive
 - Minimal scarring on side witness plate

Approved for public release; distribution unlimited.
Shaped Charge Jet Impact Test

- Standard SCJI Test
 - RPG surrogate
 - Impact along centerline at center of mass
 - Witness plates below and adjacent to projectile
Technical Results – Mortar SCJI Results

- **Witness plates**
 - Mild scarring on side witness
 - Vastly different from that of SD donor
 - No markings on bottom witness

- **Recovery**
 - Only recovered fragment was threaded for attaching tail
 - Only damage tail recovered from SD donor

- **Pressure**
 - Minimal pressure above baseline from shaped charge
 - Not indicative of detonation

- **Passing** non-detonative response

Approved for public release; distribution unlimited.
Summary of DEMN-IX Mortar IM Tests

Passing responses
- Fragment impact – Type V burn
- Sympathetic detonation – non-detonative passing response
- Shaped charge jet impact – non-detonative passing response

Bullet Impact
- Type IV w/ 0.50-cal bullet (fuze >50 feet)
- Still significant improvement over Comp B

Slow Cookoff
- Type III Response
- Need to address currently insufficient venting design
- Fast cookoff – TBD; Likely to fail without venting

First Comp B type fill to pass SCJI

IM Results for M934A1 120mm Mortars

<table>
<thead>
<tr>
<th>Explosive Fill</th>
<th>BI</th>
<th>FI</th>
<th>SCO</th>
<th>FCO</th>
<th>SCJI</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMN-IX H</td>
<td>(IV)</td>
<td>(V)</td>
<td>(III)*</td>
<td>TBD</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td>Comp B</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.
Acknowledgements

NERF Processing
- Roy Maulbetsch, Dawnn Saunders, Terry Piatt, Lori Pridgeon
- Bill Gault, Kevin Bare, Chris Inmon, Ian Cochrane, Chris Miller

Detonation Science Team
- Debbie Pilarski, Richard Benjamin, Gene Summers
- Ronnie Thompson, Will Sickels, Ray Sparks

IM Testing Team
- Benjamin Showalter, Travis Payne
- Rachel Ehlers

Funding
- Project Manager Combat Ammunition Systems (PM-CAS) through Common Low Cost IM Explosive (CLIMEx)
- ARL Mission Funds
- Office of the Secretary of Defense’s Joint IM Technical Program (OSD JIMTP)