IMPROVED IM PROPERTIES OF AN RDX/TPE BASED LOVA PROPELLANT FOR ARTILLERY APPLICATIONS

Chris van Driel, Dinesh Ramlal, Martijn Zebregs
Presenter: Wim de Klerk

Contact: chris.vandriel@tno.nl
Overview

› Introduction
 › LOVA versus IM; IM requirements
 › LOVA characteristics (cook-off, flame temp, ignition, …)
 › Gun propellant developments TNO
› LOVA propellant improvement
 › Aim of the study
› Experimental
 › Manufacturing
 › Closed vessel test
 › LSP test
› Conclusions
Introduction

Why LOVA propellants?

- IM ammunition components: propellant, igniter/primer, case, charge configuration
- Propellant IM aspects: less sensitive, low energy/explosiveness, high ignition temperatures, high extinguishability (high alpha), low response to shock/fragment impact, good cook-off properties
- LOVA propellants: **cook-off OK, bullet/fragment impact?**
- LOVA propellants often applied in Naval ammunition

Ammo magazines below waterline: low risk of bullet/fragment impact
Introduction

What are LOVA propellants?

- Composite gun propellants (not NC-based)
- Energetic filler: RDX, FOX-7, FOX-12
- Non- or low energetic binder system: CAB, TPE, plasticizer, …
- Examples: XM39, M43, NL0XX / NL1XX / NL2XX
 \[\rightarrow \text{good cook-off behaviour} \]
- Low flame temperature / good force
- Ignition difficulties
- Problems related to mechanical properties, especially at cold
 \[\rightarrow \text{affect bullet/fragment impact sensitivity} \]

Source: MSIAC
Gun propellant developments TNO

- Solventless extrusion
 - LOVA propellants: early HTPB, CAB, TPE
 - Also NC-based propellants
- Safety and ballistic properties
 - Thermal safety: stability, ageing, ...
 - Ballistic stability/safety: burning behaviour, mechanical properties (bed) compression, 40mm/35mm gun simulator, gun firings
- IM properties
- Propellant ignition
 - New primer comp. for LOVA
 - Plasma primer development (fully IM, T-compensation, green)

[NDIA Joint Armaments Conference 2012, Seattle]
Investigated LOVA gun propellants

Propellants (IBK1000 family)

› Fillers:
 › ~ 75% RDX (bi-modal size distribution)
 › 0 – 10% additional compounds

› Binder systems:
 › CAB / NC / inert plasticizer
 › Non-energetic TPE systems

Thermodynamic properties

› HoE / Force: 4010 – 4050 kJ/kg / 1040 – 1060 kJ/kg
› T_{flame}: 2475 – 2530 K

Geometry

› 19-perf, D = 6.7 mm, web = 0.7 mm, L/D = 1.5
Improvement mechanical properties

Aims

› To improve mechanical properties at low temperature
› burning properties → prevent high vivacity due to brittleness at cold
› IM properties (extend suitability for land systems)
› To improve processing properties (solventless)

Bad burning properties of RDX/TPE based propellant at low temperature
Manufacturing

- Up to kg-scale production by mixing and ram extrusion
- RDX/CAB based compositions require too high pressures for solventless processing
- Improvement processing properties by variation of:
 - CAB type
 - Plasticizer content
 - Temperature
- TPE based compositions are relatively easy to manufacture (websizes for large calibre application)
Results

- **RDX/CAB based compositions**
 - Too high viscosity, even at $T > 90^\circ C$
 - Increasing viscosity at keeping the compositions at the high processing temperatures (not confirmed by measurements)
 - Extrudable compositions lack sufficient mechanical strength
 - RDX/CAB based propellant compositions: not solventless processable

- **TPE based compositions**
 - Good processability
 - Scale-up to 2 kg scale
Results

› TPE based compositions
 › Burning properties (closed vessel, charge density 0.2 – 0.25 g/cc)

![Graph showing burning properties](image)
Results

- IM properties: LSP test (Rheinmetall)

Actual 35mm LSP Test- Set-Up
Results

- IM properties: LSP test (Rheinmetall)
Results

- IM properties: LSP test (Rheinmetall)

IBK1037-1

reference (commercially available)
Conclusions

RDX/CAB based LOVA propellant
› No solution found that meets both production and performance requirements

RDX/TPE based LOVA propellant
› Good manufacturing and IM properties
› Improved mechanical properties due to lower glass transition point

Future research
› Improvement die design (smaller websizes for medium calibre)
› Increase burning rate
› RDX replacement
Acknowledgements

The authors are grateful to the Netherlands Ministry of Defence for funding this investigation.

LSP tests were executed by Rheinmetall Defence, Unterlüß, Germany.