Novel Manufacturing Process for the Thermobaric Explosive PBXIH-18

2012 Insensitive Munitions & Energetic Material Technology Symposium

Mike Ervin *, Brian Alexander
BAE SYSTEMS Ordnance Systems Inc.
Holston Army Ammunition Plant
Kingsport, TN
Objective

• Develop a safe, cost effective manufacturing process for Thermobaric Explosives using water slurry technology developed at BAE Systems Holston Army Ammunition Plant (HSAAP).
Briefing Outline

• Background
• Prior Effort
• Investigation
• Aluminum Concerns
• Laboratory Processing
• Conclusion
• Acknowledgements
Background

• Thermobaric Explosive (TBE)
 • Principles of unconfined vapor cloud explosion (UVCE)
 • Produces blast wave of long duration
 • Higher sustained blast overpressures
• Increased lethality in confined spaces
• Mechanism
 1. Primary detonation of explosive charge
 2. Combustion of fuel particles not consumed in primary detonation
 3. Flame front accelerates to a large volume producing pressure fronts with fuel/oxidant mixture and surrounding air
HSAAP Explosive Processing

- Solvent-Lacquering Technique
 - Explosive intermediates slurried in water
 - Polymer/plasticizer dispersed in organic solvent (Lacquer)
 - Lacquer gravity feed into slurry
 - Coating precipitates onto explosive intermediates
 - Recovery of organic solvent

- Production Operations at HSAAP
 - 500 Gallon (Vacuum Stills)
 - 4,000 Gallon (7A Stills)
Prior Effort

- 2003-2004 timeframe
 - NSWC Indian Head, Yorktown Detachment approached BAE Systems, OSI for implementation of full rate manufacture prove out at the Holston Army Ammunition Plant

- Coating Technique
 - Traditional Solvent-Lacquering coating system
 - Incompatible with Thermobaric processing
 - Aluminum powder oxidized by water
 - Safety hazard due to aluminum powder interaction with water forming Hydrogen gas
 - Elimination of water from coating system
 - Water replacement fluid (perfluorocarbon compound)
 - Non reactive with metal powders
 - Similar boiling point as water
2005 Production

- 300 pound pilot scale manufacture
- Product met MIL Detail Specification

<table>
<thead>
<tr>
<th>Press Density (g/cc)</th>
<th>H2O %</th>
<th>VTS (ml/mg) 48 hrs</th>
<th>Coff. Of Friction</th>
<th>Granulation % Passing</th>
<th>Impact, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXIH-18-1</td>
<td>1.92</td>
<td>0.03</td>
<td>0.06</td>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PBXIH-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Std.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Lessons Learned

• 2005 Production
 • Impact data shows a reduction in sensitivity using a HMX/DOA Premix
 • All attributes of the product meet previous laboratory produced materials

• Perfluorocarbon
 • Manufactured by 3M
 • Fluid is cost prohibitive for large scale full rate production
 • Special delivery and handling equipment
 • Multiple decants to filter PF
 • PBXIH-18 Cost is dependant of recovery and re-use
 • Recovered >97% of PF from production run
 • Loss mostly contributed from liquid barrier seals in processing equipment

• 3M discontinued manufacture of specific perfluorocarbon fluid
 • Several new products offered with identical properties
OSI Investigations

• Several customers seeking TBE pressable warheads
 • Applications: Grenades, SOCOM, Warheads…
 • Many different binder matrixes (Viton, Hytemp, CAB, etc…)

• OSI R&D to investigate cost saving measures to make affordable product
 • Perfluorocarbon fluid vs. filtered water

• Water Advantages
 • No special delivery or handling equipment
 • No targeted training for operations staff
 • Readily available
 • “Virtually” free as compared to PF
 • Standard processing at HSAAP
Experimentation

• Aluminum-Water interaction
 • Temperature
 • Time
 • pH monitoring
 • Hydrogen detection

• No Hydrogen generation observed when varying temperature with time
 • 30 min – 24 hour period

• As expected, pH change did expedite the limited oxidation reaction
 • Altering the pH of the slurry medium allowed the operation of move forward slowly
 • No Hydrogen was generated (Real time monitoring)

• Addition of explosives and binder components
 • Did not affect the reaction
Aluminum Powder

- Suppliers
 - Toyal America, Inc.
 - Alcoa Inc.
- Both suppliers' products were evaluated
 - Production process for the metal powders leave product oxidized
 - Explanation for lack of Hydrogen formation over extended periods of processing
Laboratory Processing

- All experiments were conducted in the HSAAP 10L coating still
 - Replicate of production equipment
 - Used to make PBXN-9, PBXN-5, Comp A-5, etc...
- Trials were conducted with production filtered water
- Standard parameter evaluation was conducted
 - Time
 - Temperature
 - Agitation Rate
 - Age Time
 - Solvent-to-water ratio
 - Distillation rate
 - Lacquer addition rate

- Key parameter for acceptable product was solvent/water ratio and temperature
- Other parameter effects were negligible on the product
Assessment

- Water Slurry Process Results
 - Achieved >30% reduction in solvent usage
 - Reduced process cycle time by 67%
 - Product batches met the MIL Detail (MIL-DTL-32156 REV A)

- Analysis Comparison

<table>
<thead>
<tr>
<th></th>
<th>Press Density (g/cc)</th>
<th>H2O %</th>
<th>VTS (ml/mg) 48 hrs</th>
<th>Coff. Of Friction</th>
<th>Granulation, % Passing</th>
<th>ERL Impact, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBXIH-18-1</td>
<td>1.92</td>
<td>0.03</td>
<td>0.06</td>
<td>150</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1099-43</td>
<td>1.93</td>
<td>0.02</td>
<td>0.09</td>
<td>161</td>
<td>100</td>
<td>99.9</td>
</tr>
</tbody>
</table>
Scanning Electron Microscope

PBXIH-18-1

PBXIH-18-1099-40
Product Evaluation

- OSI partnered with Nammo Talley for pressing studies and calorimeter testing
 - Supplied 20 pounds of PBXIH-18 manufactured from the water slurry processing
- Pressing Study
 - OSI and NSWC materials evaluated at 5 ksi, 10 ksi, 15 ksi and 20 ksi
Product Evaluation

- Calorimeter Testing
- Average of 2-15.00g pellets; booster 5.00g C-4; RP-80 detonator

<table>
<thead>
<tr>
<th>Material</th>
<th>%TMD</th>
<th>Energy of Det. (cal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holston</td>
<td>98.5</td>
<td>-1826</td>
</tr>
<tr>
<td>NSWC</td>
<td>98.6</td>
<td>-1774</td>
</tr>
</tbody>
</table>
Conclusion

• Implementing water as the slurry medium showed no adverse effects to the Thermobaric Explosive product

• Process Improvements
 • Achieved significant reductions in processing times and raw material usage
 • Significant saving in raw material cost, utilizing water instead of PF

• Testing conducted by Nammo Talley show that the OSI and NSWC materials are comparable
 • Both materials had comparable results from pressing and calorimetric testing

• OSI has successfully developed and demonstrated a repeatable water slurry method for manufacture of PBXIH-18
Acknowledgement

- Nammo Talley
 - Mr. A. Davis

- BAE SYSTEMS Holston Army Ammunition Plant
 - Mr. M. Hathaway, Ms. K. Guntrum, Mr. V. Fung, Ms. D. Painter