Studies on RDX of Improved Crystal Quality

Dr. Sarah A. Headrick
BAE Systems, Ordnance Systems, Inc.
Holston Army Ammunition Plant
Kingsport, TN

Que Bui Dang
Naval Air Warfare Center
Weapons Division
China Lake, California
Background

- Data indicates that OSI’s RDX (Class 1 Type II) discolors upon accelerated aging
 - Increased shock sensitivity in cast cure PBX formulations also noted
 - Discoloration due to solvent occlusions in crystals
 - Not a new phenomenon: occurs with legacy material

- Discoloration and aging characteristics of OSI’s RDX sparked an interest in Improved RDX (Im-RDX)
 - Im-RDX previously developed at Holston
 - Higher purity than standard Bachmann RDX
 - Improved crystal quality over standard Bachmann RDX
Background: Elevated Temperature Study of Class 1 RDX

- Class 1 RDX aged 72 h at 100 °C
 - Aged material noticeably discolored
Background: Elevated Temperature Study of Class 1 RDX

Un-Aged

Aged

Brown occlusion

75X, Aged

200X, Aged
Objective

• Determine aging properties of Im-RDX in a cast cure PBX formulation
 • Im-RDX alone (not in a formulation) does not discolor upon aging
 • Theory: shock sensitivity of the formulation containing Im-RDX will be consistent before and after aging
Approach

- Task 1: Im-RDX development
 - Laboratory scale development
 - Pilot scale development
 - Initial small scale aging study
- Task 2: Preparation and delivery of Im-RDX to China Lake
 - Im-RDX blending
- Task 3: PBXC-139 Formulation & Initial Testing
- Task 4: Accelerated Aging tests of Im-RDX in PBXC-139
Task 1: Small Scale Crystal Modification Studies

- Modified crystallization process explored to produce Im-RDX
 - Experiments focused on minimizing HMX content, voids, and occlusions
 - Process crystals with “smooth” edges
 - Yields >65% obtained with HMX content less than 0.5%

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lab Scale Im-Studies</th>
<th>%RDX</th>
<th>%HMX</th>
<th>%RDX</th>
<th>%HMX</th>
<th>%Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%RDX</td>
<td>%HMX</td>
<td>%RDX</td>
<td>%HMX</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>93.8</td>
<td>6.2</td>
<td>99.7</td>
<td>0.3</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>142</td>
<td>97.5</td>
<td>2.5</td>
<td>99.8</td>
<td>0.2</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>143</td>
<td>95.0</td>
<td>5.0</td>
<td>99.8</td>
<td>0.2</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>144</td>
<td>97.1</td>
<td>2.9</td>
<td>99.9</td>
<td>0.1</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>149</td>
<td>92.2</td>
<td>7.8</td>
<td>99.6</td>
<td>0.4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>150</td>
<td>96.0</td>
<td>4.0</td>
<td>99.7</td>
<td>0.3</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>128</td>
<td>88.2</td>
<td>11.8</td>
<td>99.5</td>
<td>0.5</td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>
Task 1: Pilot Scale Crystallization Studies

- Twenty six pilot scale recrystallizations performed
 - 350 lbs produced from OSI’s class 1 RDX
 - Optimized dissolving temperature and cooling parameters
 - Material less sensitive to impact than OSI’s class 1 RDX

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before</th>
<th>After</th>
<th>%Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%RDX</td>
<td>%HMX</td>
<td>%RDX</td>
</tr>
<tr>
<td>R1</td>
<td>88.5</td>
<td>11.3</td>
<td>98.4</td>
</tr>
<tr>
<td>R3</td>
<td>88.8</td>
<td>11.2</td>
<td>99.0</td>
</tr>
<tr>
<td>R4</td>
<td>87.1</td>
<td>12.8</td>
<td>98.8</td>
</tr>
<tr>
<td>R7</td>
<td>90.3</td>
<td>9.7</td>
<td>98.8</td>
</tr>
<tr>
<td>R9</td>
<td>90.6</td>
<td>9.6</td>
<td>99.1</td>
</tr>
<tr>
<td>R18</td>
<td>92.0</td>
<td>8.1</td>
<td>99.3</td>
</tr>
<tr>
<td>R25</td>
<td>86.4</td>
<td>13.6</td>
<td>99.8</td>
</tr>
</tbody>
</table>
Task 1: Im-RDX Aging Study

- Im-RDX from pilot scale recrystallization stored for five years
 - “True” aging results vs. accelerated aging
 - Material stored dry, ambient temperature
- Evaluated purity, impact, thermal properties (DSC) and also analyzed by optical microscopy
 - No changes in appearance under 50x magnification
 - No significant change in purity
 - DSC trace revealed sharp melting transitions
- Material less sensitive to impact than OSI’s Class 1 RDX

<table>
<thead>
<tr>
<th>Sample</th>
<th>Original</th>
<th>5 Years</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%RDX</td>
<td>%HMX</td>
<td>%RDX</td>
</tr>
<tr>
<td>R-18</td>
<td>99.3</td>
<td>0.7</td>
<td>99.2</td>
</tr>
<tr>
<td>R-22</td>
<td>99.5</td>
<td>0.5</td>
<td>98.9</td>
</tr>
<tr>
<td>R-25</td>
<td>99.8</td>
<td>0.2</td>
<td>99.0</td>
</tr>
<tr>
<td>R-26</td>
<td>98.8</td>
<td>1.0</td>
<td>98.4</td>
</tr>
<tr>
<td>Class 1 Std</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Task 1: Im-RDX Elevated Temperature Study

- Im-RDX aged for 72 h at 100 °C
 - Elevated temperature study completed on 5 year aged material
 - Im-RDX does not discolor
 - No appreciable change in impact sensitivity

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Impact Sensitivity Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-RDX R-25</td>
<td>0.29</td>
</tr>
<tr>
<td>RS-RDX R-26</td>
<td>-0.35</td>
</tr>
<tr>
<td>Class 1 Avg</td>
<td>8.04</td>
</tr>
</tbody>
</table>
Task 2: Im-RDX Blending for Evaluation in PBXC-139

- Various pilot scale production lots evaluated
 - Analyzed morphology and particle size
 - Materials with best morphology and particle size combination chosen for blending
- 70 lbs of material blended water-wet
- Average particle size: 128 microns
 - Class 1 average approximately 228 microns
- Measured HMX content: 0.75%
Task 2: Im-RDX Samples Chosen for Blending

R23- 50X

R21+50X

Last batch B- 50X

R17- 50X
Task 2: Im-RDX Samples Chosen for Blending

R22- 50X

R18- 50X
Task 3: PBXC-139 Formulation

- Im-RDX samples shipped to China Lake and formulated in PBXC-139
 - PBXC-139 samples subjected to a 1 year accelerated aging study: 70 °C
 - Samples taken every 3 months and evaluated for shock sensitivity
 - Time zero and first 3-month sample evaluated at this point
- Processing not significantly different than baseline formulation
 - End of mix viscosity less than 1 kpoise
 - Formulation flows nicely with low vibration level
- Formulation density no different than baseline formulation
Task 4: Im-RDX Aging in PBXC-139

<table>
<thead>
<tr>
<th>Type of RDX</th>
<th>Time (months)</th>
<th>LSGT (50%, Kbars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im-RDX</td>
<td>0</td>
<td>36.7</td>
</tr>
<tr>
<td>Im-RDX</td>
<td>3</td>
<td>36.3</td>
</tr>
<tr>
<td>Class 1 RDX</td>
<td>0</td>
<td>41.3</td>
</tr>
<tr>
<td>Class 1 RDX</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>Class 1 RDX</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

Im-RDX Witness Plates at t = 0 Months

Im-RDX Witness Plates at t = 3 Months

Non Export Controlled. Releasable to Foreign Persons. S2DSEA2012-0172; Distribution Statement A: Approved for Public Release, Distribution Unlimited
Task 3: OSI’s Im-RDX vs. Class 1 RDX

- Shock sensitivity of PBXN-109 formulated with standard Holston Class 1 RDX was previously tested by the US Navy (Indian Head)
 - Shock sensitivity determined via IMADGT: Insensitive Munitions Advanced Development Gap Test
 - IMADGT employs shorter, larger diameter than is used in LSGT
 - Different test methods for Im-RDX vs Class 1 RDX requires comparison using percent change in sensitivity
 - Class 1 baseline formulation aged for 1 year at 70 °C
- Table below compares Im-RDX to Class 1 RDX in both PBXN-109 and PBXC-139 studies

<table>
<thead>
<tr>
<th>Type of RDX</th>
<th>Formulation</th>
<th>Time</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1 RDX</td>
<td>PBXN-109</td>
<td>13 months</td>
<td>26</td>
</tr>
<tr>
<td>Class 1 RDX</td>
<td>PBXC-139</td>
<td>3 months</td>
<td>25</td>
</tr>
<tr>
<td>Class 1 RDX</td>
<td>PBXC-139</td>
<td>6 months</td>
<td>32</td>
</tr>
<tr>
<td>Im-RDX</td>
<td>PBXC-139</td>
<td>3 months</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusions

- Im-RDX has improved purity over Holston Class 1 RDX
- Im-RDX has improved crystal quality over Holston Class 1 RDX
- Unlike standard Holston Class 1 RDX, Im-RDX does not discolor upon accelerated aging
- Shock sensitivity of PBXC-139 formulation containing Im-RDX does not change upon accelerated aging for 3 months
 - Time zero shock of sensitivity of PBXC-139 containing Im-RDX greater than that of Class 1 RDX lots
- Material will be sampled and tested again at 6 months
Acknowledgements

• Ed LeClaire, Thomas Presley and Robyn Wilmoth for executing the Im-RDX crystallization work
• Lisa Hale for completing analytical work on the Im-RDX
• Dr. Neil Tucker, Dr. David Price, Mike Ervin for technical input